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The segmentation of large volume images of neuropil acquired by serial sectioning elec-
tron microscopy is an important step towards the 3D reconstruction of neural circuits. The
only cue provided by the data at hand are boundaries between otherwise indistinguishable
objects. This indistinguishability, combined with the boundaries becoming very thin or faint
in places, makes the large body of work on region based segmentation methods inapplica-
ble. On the other hand, boundary-based methods that exploit purely local evidence do not
reach the extremely high accuracy required by the application domain that cannot tolerate
the global topological errors arising from false local decisions. As a consequence, we propose
a supervoxel merging method which arrives at its decisions in a non-local fashion, by posing
and approximately solving a joint combinatorial optimization problem over all faces between
supervoxels. The use of supervoxels allows the extraction of expressive geometric features.
These are used by the higher-order potentials in a graphical model that assimilate knowledge
about the geometry of neural surfaces by automated training on a gold standard. The scope
of this improvement is demonstrated on the benchmark dataset E1088 (Helmstaedter et al.,
2011) of 7.5 billion voxels from the inner plexiform layer of rabbit retina. We provide C++
source code for annotation, geometry extraction, training and inference.

1 Introduction

Until recently, experimental techniques in neuroscience have either provided detailed information on a
small fraction of all neurons (cell recordings, imaging of stochastically stained cells), or information av-
eraged over relatively large regions (fMRI, DTI, EEG). However, detailed knowledge of the complete
connectivity pattern of all neurons (Sporns et al., 2005) would be of tremendous value for the under-
standing of neural computation (Bock et al., 2011; Briggman et al., 2011; Seung, 2011). Obtaining
this knowledge has become a realistic objective because serial block-face scanning electron microscopy
(SBFSEM) (Briggman and Denk, 2006; Denk and Horstmann, 2004) makes it possible to acquire volume
images of up to 1 mm3 at nanoscopic and nearly isotropic resolution, without alignment problems1. A
subset of 5123 voxels from the SBFSEM benchmark dataset E1088 (Helmstaedter et al., 2011) of about
20003 voxels is depicted in Fig. 1. In this volume image, the brighter intra-cellular space makes up more
than 90% and contrasts the stained extra-cellular space that forms thin membranous faces.

As decisive as the acquisition of these volume images is their semi- or fully automated analysis because
a manual 3D reconstruction of neural circuits is costly in terms of labor (Helmstaedter et al., 2008,
2011). The task differs from medical segmentation problems where objects are distinguishable by color
or texture, and their geometry can be captured by deformable shape models. In contrast, the SBFSEM

1An in-depth treatment of the image alignment problem in serial section transmission EM is given by Kaynig et al. (2010a).
In SBFSEM, this problem is avoided ab initio because the sample remains stationary (Denk and Horstmann, 2004).
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Figure 1: a) A subset of 5123 voxels from a volume image acquired by serial block-face scanning electron
microscopy (SBFSEM) at nearly isotropic resolution. All segments are of equal interest. Their
indistinguishability (but for the extra-cellular staining) rules out segmentation by segment
classification. b) Randomly selected neuronal processes reconstructed by means of the proposed
method.

volume image needs to be partitioned completely, into hundreds of cells which are indistinguishable by
brightness and texture (separated only by thin layers of extra-cellular space), and whose diverse shape
froms intricate branching structures. The extra-cellular space becomes so thin or faint in places that a
classification of extra-cellular versus intra-cellular space based on local neighborhoods leads to massive
under-segmentation (data not shown). In addition, the sheer size of this data poses a computational
challenge.

The approach we pursue in order to segment volume images of at least eight gigavoxels is to first
group adjacent voxels that clearly belong together into supervoxels, thus exploiting the redundancy of
the volume image. From this initial over-segmentation that consists of many more supervoxels than cells,
an explicit representation of faces between supervoxels is constructed. The remaining problem which
of these faces to remove, i.e. which supervoxels to merge, is formulated as a combinatorial optimization
problem whose objective function factorizes according to a graphical model (Koller and Friedman, 2009).
This new formulation has two conceptual advantages which are our main contribution:

1. Decisions whether or not to merge supervoxels are coupled in the graphical model, thus avoiding
the exponential risk of under-segmentation inherent to independent decisions2.

2. Knowledge about the geometry of correct object surfaces and about the distribution of gray values
over these surfaces is incorporated into the model in the form of higher-order potentials. These potentials
are learned automatically from training data collected by one expert in three days for the application at
hand.

2 Related Work

On the methodological side, the classification of voxels that we use to restore local structure in SBFSEM
volume images (Section 3.1) is related to statistical approaches to edge detection in two-dimensional
images. Various methods have been used to learn from manually segmented images which brightness,
color and texture features indicate edges3, and consistent improvements over traditional edge detectors
have been reported (Alpert et al., 2010; Derivaux et al., 2007; Dollar et al., 2006; Konishi et al., 2003;
Levner and Zhang, 2007; Martin et al., 2004). The use of learned edge probabilities as elevation maps
for the watershed algorithm was proposed by Derivaux et al. (2007) and Levner and Zhang (2007).

Over-segmentations of images that capture all boundaries between objects at the cost of introducing

2The risk of incorrectly merging at least one out of n ∈ N pairs of adjacent supervoxels is 1− (1− p)n, that is, exponential
in n, if these decisions are made independently, with an equal error rate p ∈ [0, 1/2].

3Generalized linear models, k-means, support vector machines, (boosted) classification trees, likelihood ratio tests, com-
binatorial search and fuzzy classification.
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additional splits have been studied by Ren and Malik (2003) who coined the term superpixel, and more
recently by Gorelick and Basri (2009), Levinshtein et al. (2009), Moore et al. (2008), and Veksler et al.
(2010). The advantage of superpixel segmentations as intermediate structures that support the extraction
of statistical and geometric features has been demonstrated consistently by Alpert et al. (2007), Gorelick
and Basri (2009), and Ren and Malik (2003). An application in 3D is shown by Armstrong et al. (2007)
who extract features from volume segments and the faces between segments. We go beyond this approach
by extracting features also from curves between faces, using an explicit representation of the geometry
and topology of the supervoxel segmentation (Andres et al., 2010b).

Our model for the removal of excessive supervoxel faces builds on previous work on hierarchical seg-
mentation by Alpert et al. (2007), Armstrong et al. (2007), Ren and Malik (2003), and Vanhamel et al.
(2003). We extend these methods in which boundaries between segments are classified separately by con-
sidering sets of boundaries jointly and coupling the decisions to remove or preserve these boundaries in
a single combinatorial optimization problem whose objective function factorizes according to a graphical
model (cf. e.g. Koller and Friedman, 2009).

The majority of graphical models used for image segmentation are Markov Random Fields (MRFs)
in which each pixel holds one variable to which a segment label is assigned. Univariate functions relate
single variables to an observed image, and functions that depend on two (neighboring) variables penalize
label transitions, (cf. e.g. Szeliski et al., 2008). MRFs of this class have been used with superpixels in-
stead of pixels e.g. by He et al. (2006). These MRFs are only suitable for settings in which super-pixels
are distinguishable by color or texture and each superpixel belongs to a specific class, e.g. foreground
or background. They are, however, unsuitable for segmenting SBFSEM volume images of nervous sys-
tems where supervoxels are indistinguishable by brightness and texture and any assignment of labels
to segments would be arbitrary. The graphical model we propose reflects this difference: It contains
no variables associated with segments but instead, one binary variable for each face between adjacent
supervoxels, indicating whether this face is to be removed or preserved. This representation was used
before for segmenting photographs (Andres et al., 2011; Kappes et al., 2011).

Towards the 3D reconstruction of neural circuits, several paths are currently pursued, starting from
different types of images. Manual reconstructions from nearly isotropic SBFSEM volume images in which
the extra-cellular space is stained are possible by distributing (crowd-sourcing) the problem of tracing
neuronal processes to non-experts (Helmstaedter et al., 2011). Attempts to solve the reconstruction
problem automatically for the same type of data have been made by Jain et al. (2007) and Turaga
et al. (2010) who use convolutional neural networks to segment the volume image into distinct neuronal
processes, and by Andres et al. (2008) who uses random forests for this purpose. Both methods exploit
the isotropy of the volume image by treating all three dimensions equally. In this article, we extend the
work of Andres et al. (2008).

A different line of research starts from anisotropic electron microscopic volume images, SBFSEM (Glas-
ner et al., 2011; Jurrus et al., 2009; Macke et al., 2008; Vazquez-Reina et al., 2009) and Serial Section
Transmission EM (Chklovskii et al., 2010; Jurrus et al., 2010; Kaynig et al., 2010b; Vazquez-Reina et al.,
2011). This anisotropic data is processed slice by slice before the results of all slices are consolidated.

These attempts to reconstruct the geometry of neural circuits are complemented by methods for iden-
tifying stained intra-cellular structure such as mitochondria (Kumar et al., 2010; Lucchi et al., 2010) and
synapses (Kreshuk et al., 2011).

A semi-automated approach to reconstruct neuronal processes from fluorescent light rather than elec-
tron microscopic images is pursued by Lu et al. (2009).

3 Methods

The algorithm we propose for the automated segmentation of SBFSEM volume images consists of eight
steps:

1. A set of rotation-invariant non-linear features is extracted from the raw data, describing the 3-
dimensional neighborhood of each voxel.

2. A classifier Cvoxel, trained to distinguish intra-cellular from extra-cellular tissue based on these
features, predicts the probability of each voxel to belong to either class.

3. Based on these probabilities, the volume image is over-segmented into supervoxels using a marker-
based watershed algorithm.

4. The faces between supervoxels and the curves that bound these faces are represented explicitly,
assigned unique labels and encoded as lists of topological coordinates (Brice and Fennema, 1970).
The neighborhood system of these objects is stored as a cellular complex (Andres et al., 2010b;
Hatcher, 2002).
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Figure 2: a) A yz-slice of 2422 voxels from the SBFSEM volume image (Helmstaedter et al., 2011). b)
Contrast enhancement between intra- and extra-cellular space obtained by the classifier Cvoxel.
c) Supervoxel segmentation. d) Faces between supervoxels which are preserved (blue) and
removed (yellow), according to the solution of the combinatorial optimization problem (4),
cf. Section 3.4.

5. From this explicit representation of the geometry and topology of the volume segmentation, features
are extracted that describe faces between supervoxels and the distribution of angles between these
faces.

6. For every supervoxel face, a second classifier Cface predicts the probability that this face should be
preserved, given its features. Moreover, for every curve in which several faces meet, a third classifier
Ccurve predicts the probabilities of all configurations that can be attained by preserving or removing
these faces, given the angles between them.

7. The predicted probabilities from Cface and Ccurve are combined as first and third order potentials
in a graphical model, i.e. an energy function that depends on as many binary variables as there are
supervoxel faces, indicating whether these faces are to be preserved or removed.

8. A joint optimal decision to preserve or remove supervoxel faces is found by minimizing this energy
function approximately using loopy belief propagation (Kschischang et al., 2001; Pearl, 1988) with
message damping (Murphy et al., 1999), followed by lazy flipping (Andres et al., 2010a).

3.1 Restoration of Local Structure by Voxel Classification

Steps 1 and 2 serve to enhance the contrast between intra-cellular and extra-cellular space and to close
local gaps in the extra-cellular space that have not been stained. Towards this goal, 28 rotation-invariant
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non-linear features are extracted from the volume image, describing the distribution of gray values in a
31× 31× 31 neighborhood around each voxel (cf. supplementary material).

The feature vector of each voxel is mapped to an estimated probability that this voxel belongs to
the intra-cellular space. This mapping is learned from hand-labeled data (cf. Section 4) by means of a
Random Forest Cvoxel (Breiman, 2001). The learning itself is decribed in the supplementary material.
The fraction of decision trees in Cvoxel that classify a given feature vector as intra-cellular is an estimate
of the probability of the corresponding voxel to belong to this class. The predicted probabilities of all
voxels form a 3-dimensional probability map that is essentially a restored and contrast-enhanced version
of the SBFSEM volume image (Fig. 2b).

Feature extraction and Random Forest prediction are operations whose runtime complexity is linear
in the number of voxels. The construction of decision trees during learning has log-linear runtime in the
number of training samples which is negligible in this application, compared to the prediction time on
volumes much larger than those used for training. Absolute runtimes are summarized in Section 4. The
C++ code of the Random Forest and the volume image features are made available as part of the image
processing library Vigra (Koethe, 2010).

3.2 Supervoxel Segmentation

To ease the computational burden and to permit the extraction of expressive geometric features, the
restored volume image is over-segmented into supervoxels such that no distinct neurons are incorrectly
merged (cf. Section 4 for an experimental validation of this claim), at the cost of introducing superfluous
splitting faces that do not correspond to cellular membranes. These excessive faces are removed later, in
Step 8 (Section 3.4).

The initial supervoxel segmentation is found by means of the marker-based watershed algorithm de-
scribed in detail in the supplementary material. Markers are defined as the connected components of
those voxels that are classified as intra-cellular space by all decision trees of the Random Forest Cvoxel,
i.e. those voxels whose estimated probability to represent intra-cellular space is 1. These markers serve
as supervoxel seeds. They are grown until the entire volume is occupied such that each voxel is assigned
the label of a seed whose min-max distance to the given voxel is minimal (cf. Nguyen et al., 2003; Turaga
et al., 2009). The min-max distance between two points a and b is the highest point on the lowest path
C(a, b) from a to b:

d(a, b) = min
C(a,b)

max
r∈C(a,b)

f(r) . (1)

The elevation f(r) at a voxel r is given by the number of decision trees that classify this voxel as extra-
cellular. The runtime of this algorithm is linear in the number of voxels. Its output is a 3-dimensional
segment label map that assigns a segment label to each voxel (Fig. 2c).

The segment label map encodes faces between supervoxels and the curves between these faces only
implicitly, in the form of neighboring voxels whose segment labels differ. Moreover, it does not store
explicitly which segments are adjacent, separated by which faces and in which curves adjacent faces
meet. We have developed algorithms and data structures (Andres et al., 2010b) that encode every face
between two supervoxels and every curve between supervoxel faces as a list of topological coordinates
(Brice and Fennema, 1970) and store the adjacency of these objects as a cellular complex (Hatcher, 2002).
A partition data structure allows us to construct this representation in a block-wise fashion, in a runtime
that is linear in the number of voxels and log-linear in the number of faces and curves. This facilitates
the extraction of geometric features from the supervoxel segmentation based on which excessive faces are
identified and removed.

3.3 Extraction of Statistical and Geometric Features

In order to learn from hand-labeled training data (Section 4) what distinguishes essential from excessive
supervoxel faces, 31 features of supervoxel faces and 21 features of curves between adjacent faces are
extracted. The former describe the distribution of gray values on a given face; the latter characterize the
arrangement of adjacent supervoxel faces in terms of the distribution of angles between these faces along
the given curve. All features are described in detail in the supplementary material.

The motivation behind the extraction of angles is that humans can often distinguish excessive from
essential supervoxel faces without seeing the SBFSEM volume image at all, merely from the configuration
or gestalt of supervoxel faces. It is, for instance, obvious to humans that smooth continuations of
supervoxel faces are more probable in neural tissue than sharp edges, the latter indicating possible over-
segmentation (Fig. 3). The improvement achieved by learning and incorporating this information is
shown in Section 4.
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(0, 0, 0) (0, 0, 1)∗ (0, 1, 0)∗ (0, 1, 1)

(1, 0, 0)∗ (1, 0, 1) (1, 1, 0) (1, 1, 1)

Figure 3: Left: Humans can often distinguish excessive supervoxel faces (gray) from essential ones (black)
without seeing the SBFSEM volume image at all, merely from their gestalt and arrangement.
Right: There are 8 possibilities to preserve or remove three supervoxel faces (blue) that meet
in one curve (green). In the biological problem studied, sharp edges, (0, 1, 1) and (1, 0, 1), are
unlikely, and smooth continuations, (1, 1, 0), are more probable than junctions, (1, 1, 1). Open
surfaces (*) do not occur; all surfaces in SBFSEM volume images of neural tissue are closed.
The probabilities of the remaining 5 configurations are learned from hand-labeled data by the
Random Forest Ccurve.

3.4 Removal of Over-Segmentation

The last step towards the construction of the final segmentation is to remove remaining over-segmentation,
i.e. to identify and remove excessive supervoxel faces based on the features just described. Three alterna-
tives of increasing complexity are considered in the following and compared experimentally in Section 4.

In all alternatives, a unique index is assigned to each of the nf ∈ N supervoxel faces and to each of the
nc ∈ N curves between faces. Every supervoxel face j ∈ {1, . . . , nf} is associated with a binary variable
xj ∈ {0, 1} that indicates whether this face is to be removed (xj = 0) or preserved (xj = 1). Due to the
discrete structure of the voxel grid, curves have either three or, rarely, four adjacent faces (Andres et al.,
2010b). The sets N3 ⊆ {1, . . . , nc} and N4 ⊆ {1, . . . , nc} contain the indices of the respective curves.
The indices of the adjacent faces are stored in the rows of the matrices R ∈ N|N3|×3 and S ∈ N|N4|×4.

In Alternative A, a Random Forest Cface is trained on hand-labeled data (Section 4) to distinguish
essential from excessive faces based exclusively on their 31 features, exactly as proposed in (Andres
et al., 2008). The distribution of angles between faces is ignored in this approach. For every face j,

Cface predicts a probability p
(1)
j (0) that this face should be removed and the corresponding probability

p
(1)
j (1) = 1− p(1)j (0) that this face should be preserved, i.e. one probability mass function p

(1)
j : {0, 1} →

[0, 1] for every face j. The final segmentation is obtained by removing all faces for which p
(1)
j (1) is below

a threshold β ∈ [0, 1]. This threshold establishes a trade-off between false removals (under-segmentation)
and false preservations (over-segmentation) (Section 4).

In Alternative B, the decision is based only on the gestalt of the over-segmentation, namely on
the 21 features that describe the angles between supervoxel faces. The 31 features of supervoxel faces
are ignored in this alternative. A Random Forest Ccurve is trained on hand-labeled data (Section 4) to
predict for every curve k ∈ N3 between three adjacent faces rk1, rk2, rk3 the probability of each of the eight

possibilities to remove or preserve these faces (Fig. 3). One probability mass function p
(3)
k : {0, 1}3 → [0, 1]

is thus obtained for every curve k (Tab. 1). It translates into an energy function E
(3)
k := − log p

(3)
k that

is minimal where the probability p
(3)
k is maximal (Tab. 1). Curves at which only one adjacent face is to

be preserved (Fig. 3) do not occur in SBFSEM volume images of neural tissue that contain only closed
surfaces. The energy of these configurations is therefore set to infinity. The same argument applies to
curves k ∈ N4 with four adjacent faces sk1, . . . , sk4 which motivates the introduction of additional 4th

order energy functions E
(4)
k : {0, 1}4 → {0,∞} that suppress those 4 out of the 16 possible configurations
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Table 1: Probabilities p
(3)
k predicted by Ccurve for configurations of three adjacent supervoxel faces, and

corresponding energies E
(3)
k .

xrk1
xrk2

xrk3
p
(3)
k (xrk1

, xrk2
, xrk3

) E
(3)
k (xrk1

, xrk2
, xrk3

)

0 0 0 pk(0, 0, 0) − log pk(0, 0, 0)

0 0 1 0 ∞
0 1 0 0 ∞
0 1 1 pk(0, 1, 1) − log pk(0, 1, 1)

1 0 0 0 ∞
1 0 1 pk(1, 0, 1) − log pk(1, 0, 1)

1 1 0 pk(1, 1, 0) − log pk(1, 1, 0)

1 1 1 pk(1, 1, 1) − log pk(1, 1, 1)

in which only one face is preserved4: ∀x1, . . . , x4 ∈ {0, 1}:

E
(4)
k (x1, . . . , x4) =

{
∞ if x1 + . . .+ x4 = 1

0 otherwise .
(2)

It happens in practice that predictions from different curves that delimit the same face lead to conflicting
recommendations as to preserve or remove the given face. Moreover, the decision to preserve or remove
one face has implications on the decisions for the neighboring faces, and these implications propagate
across the adjacency graph of faces. The final segmentation can thus no longer be obtained by a separate
classification of supervoxel faces but requires the joint minimization of the total energy comprising the 3rd
order potentials of Tab. 1 and the 4th order potentials (2), i.e. the solution of the following combinatorial
optimization problem:

min
x∈{0,1}nf

(∑
k∈N3

E
(3)
k (xrk1

, xrk2
, xrk3

) +
∑
k∈N4

E
(4)
k (xsk1

, xsk2
, xsk3

, xsk4
)

)
. (3)

Alternative C is the combination of A and B, and is our best proposal. For every supervoxel face

j, the function p
(1)
j obtained from Cface translates into a unary potential E

(1)
j = − log p

(1)
j that assigns a

higher energy to the less likely decision. These unary potentials are added to the objective function in
(3), leading to the joint optimization problem

min
x∈{0,1}nf

(1− α)

nf∑
j=1

E
(1)
j (xj) + α

∑
k∈N3

E
(3)
k (xrk1

, xrk2
, xrk3

)

+ α
∑
k∈N4

E
(4)
k (xsk1

, xsk2
, xsk3

, xsk4
)

)
. (4)

The mixture parameter α ∈ [0, 1] is an adjustable parameter that it is optimized on training data (Section
4). The optimization problem (4) specializes to Alternative A for α = 0 and to Alternative B for α = 1.

Finding solutions of (3) and (4), even approximately, is a formidable problem: While energy functions
that decompose according to a graphical model can be minimized efficiently by dynamic programming if
the graphical model is a tree (Pearl, 1988) and by solving a minimum s-t-cut problem if the energy func-
tion is (permuted) submodular (Boykov et al., 2001; Kolmogorov and Zabih, 2004; Schlesinger, 2007), the
graphical model defined here has loops and its energy function is not permuted submodular5. The min-
imization of functions with non-submodular loopy graphical models is in general NP-hard (Kolmogorov
and Zabih, 2004).

For small problems obtained from subsets of 1503 voxels (less than 1/2000) of the SBFSEM benchmark
dataset, global optima of (3) and (4) can be found by means of integer linear programming (ILP) (Schri-
jver, 2003) using branch-and-cut, as shown in (Andres et al., 2010a). Less than 8 GB of RAM and a few
minutes of runtime are sufficient in this case. In contrast, 512 GB of RAM and four weeks of runtime
are insufficient to solve the ILP for the supervoxel segmentation of the whole dataset of 7.5 billion voxels

4Learning to distinguish the remaining 12 configurations based on angles, similar as in Tab. 1, would require substantially
more training data and increase the labeling time several times over, an effort that is not justified given that more than
99% of all curves have only three adjacent faces.

5In particular, the projections E
(3)
k (1, ·, ·) are supermodular whereas the projections E

(3)
k (0, ·, ·) are submodular (cf. Tab. 1).
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Figure 4: The individual steps and the final result of the segmentation procedure are evaluated on the
gold standard validation dataset, a sub-block of 1003 voxels (a) in which all intra-cellular voxels
have been labeled manually (b), cf. Helmstaedter et al. (2008).

(Section 4) that consists of 1.8 million supervoxels, 15.1 million supervoxel faces (variables and unary
potential functions) and 30.1 million curves between supervoxel faces (higher-order potential functions).
The description of problem (4) alone takes 3.6 GB of space, excluding data structures that are needed to
perform the optimization. We therefore need to settle for approximations.

In (Andres et al., 2010a), state-of-the-art alternatives are assessed on ten subsets of 1503 voxels where
the energies can be compared to the global optimum found by ILP. The experiments show that loopy
belief propagation (LBP) (Kschischang et al., 2001; Pearl, 1988) with message damping (Murphy et al.,
1999) performs exceptionally well, significantly outperforming both tree-reweighted belief propagation
(Wainwright and Jordan, 2008) and a dual decomposition ansatz using sub-gradient descent methods
(Komodakis et al., 2011) on this problem. The energy of configurations found by LBP deviates by only
0.4% on average from the global optimum. Starting from these, a local search via lazy flipping (Andres
et al., 2010a) finds configurations whose energies deviate by only 0.1% from the global optimum. Here,
we therefore use a combination of LBP and lazy flipping to solve (3) and (4) approximately.

4 Results

The procedure just described is applied to the SBFSEM benchmark dataset E1088 (Helmstaedter et al.,
2011), a volume image of 2048×1792×2048 ≈ 7.5·109 voxels that shows a part of the inner plexiform layer
(IPL) of rabbit retina at a resolution of 22× 22× 30 nm3 (Fig. 1). The gold standard validation subset
of 1003 voxels in which all intra-cellular voxels have been labeled by hand (Fig. 4) is used to quantify
the quality of computed segmentations and to compare these results to those of a previous approach
(Andres et al., 2008). In addition, for a qualitative comparison with a non-trivial baseline method, 3D
reconstructions of neurons from the entire volume image are compared to 3D reconstructions of the same
neurons found by means of (Andres et al., 2008).

The Random Forests Cvoxel, Cface and Ccurve are learned from training data collected in two blocks of
1503 voxels, one from the dense inside of the IPL where neuronal processes intertwine and the average
gray value is low, the other from the clearer border of the IPL where the average gray value is higher.
These blocks have no overlap with the validation set and make up less than 0.1% of the volume image.

For Cvoxel, 3200 voxels are labeled as either intra-cellular or extra-cellular using the open source program
Ilastik (Sommer et al., 2011). The labeling is performed incrementally, starting with 500 voxels per class
that are placed at least 5 voxels away from each other. The classifier is then trained, and the predicted
probability maps for the training volumes are displayed as overlays to the data. Another 500 voxels per
class are labeled where the probability maps need improvement. This procedure is repeated another two
times, labeling 300 voxels per class. Labeling according to this protocol takes an expert approximately
one day.

The restoration of the validation volume image as achieved by the trained Random Forest Cvoxel is
depicted in Fig. 2b. On a maximal random stratified subset that contains as many intra-cellular voxels
as extra-cellular voxels, 91.8% of all voxels are classified in agreement with the manual tracing. 8.2%
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a) Alternative A (face features only) b) Alternative C (full model)

Figure 5: Comparison of models, and choice of parameters. The full graphical model (Alternative C)
achieves lower error rates than the model using higher-order potentials only (special case α = 1,
Alternative B) and lower than a model treating all faces independently (Alternative A).

Table 2: Quality of automatic segmentations of the gold standard validation dataset (Fig. 4) in terms of
the fraction of correctly preserved and correctly removed faces. F/C means false/correct. P/R
means preservation/removal. All values are given in percent.

Alternative FR FP CR CP C

A (face features only, β = 0.45) 1.6 2.0 17.2 79.2 96.4
B (curve features only) 4.4 8.6 10.6 76.4 87.0
C (full model, α = 0.25) 0.9 1.7 17.5 79.9 97.4

are classified in disagreement with the manual tracing, 5.1% as extra-cellular space and 3.1% as intra-
cellular space. While a hard thresholding of these predictions fails to give accurate segmentations, the
topography of the probability map can still be exploited to obtain a proper over-segmentation by means
of the watershed transform. It is crucial that no under-segmentation is introduced at this stage because
false mergers could not be corrected in subsequent steps of the procedure as presented here. The following
indicator of under-segmentation corroborates this assumption: For every connected component j of voxels
labeled as intra-cellular in the validation set and every segment k in the watershed segmentation of the
same volume, Qjk denotes the number of voxels that belong at the same time to the connected component
(true segment) j and to the watershed segment k. Let R be obtained from the overlap matrix Q by column
normalization. Rjk is then the fraction of the watershed segment k overlapped by the true segment j.
In an over-segmentation, all except very small segments have no relevant overlap with more than one
true segment. This is quantified by the under-segmentation index, the second largest entry of the k-th
column of R. In this application, all watershed segments that are larger than 100 voxels exhibit an
under-segmentation index of less than 10%.

In order to train Cface and Ccurve, 5000 faces between supervoxels are labeled by hand in the watershed
segmentations of the training volumes, using an interactive 3D labeling tool (Kröger, 2010) based on the
Visualization Toolkit6. Faces that are easy to label are labeled first because ambiguous cases become
clear once the surrounding faces are labeled. It takes an expert roughly two days to collect a training
set of the given size. The labeled faces and the features of these faces make up a training set for Cface.
Triples of adjacent labeled faces and the angles between these faces are used to train Ccurve. The training
set for Ccurve is extended by adding all permutations of adjacent supervoxel faces7.

Over-segmentation is removed by identifying and removing excessive supervoxel faces. Alternatives A
(face features only), B (curve features only) and C (full model) described in Section 3.4 are compared.
Optimization is performed by loopy belief propagation (50 steps) with a message damping of 0.3, followed
by lazy flipping (Andres et al., 2010a), using a maximum subgraph size of 3. The quality of the final
segmentation is measured on the validation set in terms of the fraction of supervoxel faces that are
falsely removed from the initial over-segmentation or falsely preserved, as judged by the dense manual
segmentation that is the gold standard.

For Alternative A (face features only), the trade-off between false removals and false preservations

6http://www.vtk.org
7As an example, a triple where the first face is labeled as excessive and the last two faces are labeled as essential (0, 1, 1)

makes up three items labeled (0, 1, 1), (1, 0, 1) and (1, 1, 0) in the training set for which the angle features are permuted
accordingly.
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Table 3: At every curve in which three supervoxel faces meet, the classifier Ccurve predicts a probability
for each of the eight possibilities to remove (0) or preserve (1) these faces (cf. Fig. 3). The
three configurations (0, 0, 1), (0, 1, 0) and (1, 0, 0) in which only one face is preserved do not
occur in the SBFSEM volume image that contains only closed surfaces. The table below shows
the confusion of the classifier Ccurve for the remaining five configurations. Columns correspond
to the predictions, rows to the truth. It can be seen from this table that the configurations
(0, 1, 1), (1, 0, 1) and (1, 1, 0) are well separated whereas it is not possible to distinguish these
configurations from (1, 1, 1) by Ccurve alone. This motivates the combination of Cface and Ccurve

in the graphical model (4).

Ccurve: (0, 0, 0) (1, 1, 0) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 1.9% 0.7% 0.9% 0.5% 0.4%
(1, 1, 0) 1.7% 6.9% 0.9% 0.7% 2.9%
(1, 0, 1) 2.6% 0.9% 6.7% 1.1% 3.2%
(0, 1, 1) 2.3% 0.7% 1.6% 5.3% 2.9%
(1, 1, 1) 4.6% 5.0% 6.8% 5.2% 33.8%

Table 4: Absolute runtime, memory consumption and parallelization of the segmentation of 7.5 billion
voxels. Numbers are given for an Intel 4×Quad Xeon equipped with 128 GB RAM, running at
2.4 GHz.

Computation Runtime CPUs RAM/CPU HDD

Voxel features 1d 11h 59m 10 < 2 GB∗ 842 GB
Training of Cvoxel < 10m 1 < 2 GB < 1 GB
Voxel classification (Cvoxel) 11h 39m 10 < 2 GB∗ 8 GB
Supervoxel segmentation 2h 13m 1 72 GB 61 GB
Geometry extraction 19h 22m 10 < 2 GB∗ 273 GB
Supervoxel face features 2d 14h 28m 10 < 2 GB 3 GB
Training of Cface < 10m 1 < 2 GB < 1 GB
Face classification (Cface) < 10m 10 < 2 GB < 1 GB
Curve angle features 1h 25m 10 < 2 GB 2 GB
Training of Ccurve < 10m 1 < 2 GB < 1 GB
Curve classification (Ccurve) < 10m 10 < 2 GB < 1 GB
Loopy Belief Propagation 7h 41m 1 < 2 GB < 1 GB
Lazy Flipper (d = 3) 2d 9h 38m 1 89 GB < 1 GB

∗) adjustable by selecting a block size.

w.r.t. the threshold β is depicted in Fig. 5a. At the optimal β = 0.45, 96.4% of all faces are classified
correctly (Tab. 2). Alternative B (curve features only) performs worse, classifying 84.1% of all faces
correctly (Tab. 2). The reason can be seen in the confusion matrix of Ccurve (Tab. 3): The configurations
(0, 1, 1), (1, 0, 1) and (1, 1, 0) are separated well by the curve features (angles) which demonstrates their
predictive power. However, it is not possible to distinguish these configurations from (1, 1, 1) based on
the angles alone. In other words, it is hard to decide, based on the angles alone, whether or not faces
should be removed. However, if there is evidence that a face should be removed, it is also clear which of
the three this should be. Overall, this motivates the combination of the predictions from Cface and Ccurve

in Alternative C. Alternative C which takes into account evidence from both faces and curves yields the
overall best results for all mixture parameters α between 0.05 and 0.4 (Fig. 5b). At the optimal α = 0.25,
97.5% of all faces are classified correctly (Tab. 2). Compared to Alternative A, the fraction of falsely
removed faces is reduced by more than 43% to 0.9%. At the same time, the fraction of false preservations
is reduced by 15% to 1.7% (cf. Tab. 2).

Reconstructions of neurons from the entire volume image are possible using Alternatives A and C.
The false removal rate of Alternative B is too high, leading to excessive under-segmentation in large
scale reconstructions where neurons have between 1000 and 10000 supervoxel faces all of which need to
be correctly preserved. In practice, a false removal rate below 1% is indispensable to prevent under-
segmentation in large scale reconstructions. This can be achieved with Alternative A by setting β = 0.2
and by Alternative C with α = 0.25. It can be seen from Fig. 6 that the full-featured Alternative C
affords better reconstructions; less boundaries are falsely preserved and thus, larger parts of neuronal
processes are correctly merged. A reconstruction of 100 randomly selected processes is shown in Fig. 7.
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Figure 6: Comparison of automatic segmentations by Approach A with β = 0.45 (left) and the full
graphical model (Approach C) with α = 0.25 (right). In this example, Approach C reduces
over-segmentation without introducing under-segmentation which is in accordance with the
quantitative results in Tab. 2.

5 Conclusion

An automated procedure for segmenting SBFSEM volume images of neuropil is presented. It starts by
over-segmenting the volume image into supervoxels and selectively merges supervoxels based on features
of the over-segmentation. Particular to this approach is the coupling of the individual merging decisions
in a joint optimization problem which allows clear evidence for the existence or absence of boundaries
to propagate over long distances to ambiguous regions. The representation used and the training set
provided allow the inference procedure to learn by itself gestalt laws that are most salient for the problem
at hand.

Compared to a previous method (Andres et al., 2008) in which all decisions are made separately, the
number of false mergers is reduced (by 43%) to 0.9% while the number of false splits is reduced (by
15%) to 1.7% at the same time. Although the thinnest neuronal processes are still falsely split and the
fully automated and exhaustive 3D reconstruction of neuropil remains an unsolved problem, the accuracy
achieved by the new method constitutes substantial progress over (Andres et al., 2008), and the resulting
segmentations (Fig. 7) provide a basis for applying stitching procedures that are subject of future work.
Advances in tissue preparation may alleviate this problem.

The procedure is not restricted in principle to SBFSEM volume images, and should carry over to
other biological or medical images that bear resemblance with the data studied here. In general, the
idea of segmenting images based on geometric features extracted from an initial over-segmentation is
applicable in practice to volume images that consist of several billion voxels, provided that local evidence of
boundaries exists between different objects. The C++ source code for geometry and topology extraction,
classification, combinatorial optimization and a GUI for voxel labeling are provided8.

8hci.iwr.uni-heidelberg.de/Software
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Figure 7: Automated 3D reconstruction of 100 randomly selected neuronal processes from the SBFSEM
benchmark dataset E1088 (Helmstaedter et al., 2011) of the inner plexiform layer of rabbit
retina, by means of the proposed method.
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