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Abstract. Multi-dimensional arrays are among the most fundamental
and most useful data structures of all. In C++, excellent template li-
braries exist for arrays whose dimension is fixed at runtime. Arrays whose
dimension can change at runtime have been implemented in C. However,
a generic object-oriented C++ implementation of runtime-flexible arrays
has so far been missing. In this article, we discuss our new implementa-
tion called Marray, a package of class templates that fills this gap. Marray
is based on views as an underlying concept. This concept brings some of
the flexibility known from script languages such as R and MATLAB R© to
C++. Marray is free both for commercial and non-commercial use and
is publicly available from www.andres.sc/marray.

1 Introduction and Related Work

A d-dimensional array is a data structure in which each data item can be ad-
dressed by a d-tuple of non-negative integers called coordinates. Addressing data
by coordinates is useful in many practical applications. As an example, con-
sider a digital image of 1920x1080 pixels. In this image, each pixel can either
be identified by the memory address where the associated color is stored or,
more intuitively, by a pair of coordinates (y, x) ∈ {0, . . . , 1919} × {0, . . . , 1079}.
Closely related to multi-dimensional arrays are multi-dimensional views. While
arrays are the storage containers for multi-dimensional data, views are interfaces
that allow the programmer to access data as if it was stored in an array. In the
above example, views can be used to treat any sub-image as if it was stored
in a separate array. Scientific programming environments such as R [12, 4] and
MATLAB R© [3] exploit the versatility of views.

Some of the best implementations of arrays whose dimension is fixed at run-
time are written in C++, among these are the Boost Multidimensional Array
Library [8], Blitz++ [19], and MultiArray of the image processing library Vi-
gra [5]. All three packages implement a common interface for views and arrays.
Boost in addition allows the programmer to treat arrays as a hierarchy of nested
containers. In a hierarchy of nested containers, an (n + 1)-dimensional array is
a container for n-dimensional arrays that have the same size. In this hierarchy,
1-dimensional arrays differ from all other arrays in that they are containers of
array entries that need not be arrays themselves. This distinction is realized in
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all three implementations by means of template specialization with respect to
the dimension of an array, an approach that achieves great runtime performance
and compatibility with the simple multi-dimensional arrays that are native to
C. However, template specialization also means that the data type of an array
depends on its dimension. Thus, the hierarchy of nested containers does not gen-
eralize well in C++ to arrays whose dimension is known only at runtime. This
article therefore presents an implementation that is based exclusively on views.
Little is lost because the hierarchy of nested containers can still be implemented
as a cascade of views.

Many practical applications do not require runtime-flexibility because the
dimensions of all arrays are either known to the programmer or restricted to
a small number of possibilities that can be dealt with explicitly. However, the
range of applications where the dimension of arrays is not known a priori and
can change at runtime, possibly depending on the user input, is significant. In
particular, these are applications that deal with multi-variate data and/or multi-
variate functions of discrete variables, e.g. probability mass functions. It is no
surprise that the runtime-flexible arrays of R and MATLAB R© have proven useful
in these settings.

Section 2 summarizes the mathematics of runtime-flexible multi-dimensional
views and arrays. It is a concise compilation of existing ideas from excellent
research articles [8, 19] and text books, e.g. [7]. Section 3 deals with the C++
implementation of the mathamtical concepts and provides some examples that
show how the classes can be used in practice. Readers who prefer a practical
introduction are encouraged to read Section 3 first. Section 3.4 discusses already
implemented extensions based on the C++0x standard proposal [16]. Section 4
concludes the article.

2 The Mathematics of Views and Arrays

2.1 Views

Views provide an interface to access data as if it was stored in an array. A few
definitions are sufficient to describe the properties (syntax), function (semantics),
and transformation of views. These definitions are dealt with in this section. As
they are implemented one-to-one in the Marray classes, this section also explains
in detail how these classes work internally.

Definition 1 (View). A non-degenerate multi-dimensional view is a quadru-
ple (d, s, t, p0) ∈ N × Nd × Nd × N in which d is called the dimension, s the
shape, t the strides, and p0 the offset of the view. A tuple (0, ∅, ∅, p0) is called a
degenerate/scalar/0-dimensional view.

Views allow the programmer to address data by tuples of d positive integers
called coordinates. These coordinates are taken from ranges of values that are
determined by the view’s shape:
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Definition 2 (Coordinates). Given a view V = (d, s, t, p0),

CV :=

{
{0, . . . , s0 − 1} × . . .× {0, . . . , sd−1 − 1} if d 6= 0
∅ otherwise

(1)

is called the set of coordinate tuples of V .

According to this definition, coordinates start from 0 as is common in C++,
and not from 1 as in many script languages. Which data item is addressed by
a coordinate tuple (c0, . . . , cd−1) ∈ CV is determined by the addressing function
of the view. This function is parameterized by the view’s strides and offset:

Definition 3 (Addressing Function). Given a view V = (d, s, t, p0) with
d 6= 0, the function aV : CV → N0 with

∀c ∈ CV : aV (c) = p0 +
d−1∑
j=0

tjcj (2)

is called the addressing function of V .

Semantically, a coordinate tuple c = (c0, . . . , cd−1) identifies the data item
that is stored at the address aV (c) in memory. Here are some examples: Assume
that the integers 1, . . . , 6 are stored consecutively in memory at the addresses
100, . . . , 105. The six views in Tab. 1 address this memory and are written down
next to the table in matrix notation, i.e. as tables in which the entry at row j
and column k corresponds to the integer addressed by the coordinate (j, k):

The views V1, . . . , V4 address the same set of integers but in a different shape
and with different addressing functions. Perhaps more interestingly, V5 is a sub-
view of V4 that has the same dimension but a different shape, and V6 is a sub-view
of V3 whose dimension has been reduced. In general, sub-views can be defined
as follows:

Definition 4 (Sub-View). Given a view V = (d, s, t, p0) with d 6= 0, a start
coordinate c ∈ CV , and a shape s′ ∈ Nd such that ∀j ∈ {0, . . . , d−1} : cj+s′j ≤ sj,

sub-view(V, c, s′) := (d, s′, t, p0 + aV (c)) (3)

is called the sub-view of V with the shape s′, starting at the coordinate c.

Table 1. Multi-dimensional views on the same data can differ in dimension,
shape, strides, and offset.

View Dim d Shape s Strides t Offset p0

V1 2 (3, 2) (1, 3) 100
V2 2 (3, 2) (2, 1) 100
V3 2 (2, 3) (1, 2) 100
V4 2 (2, 3) (3, 1) 100
V5 2 (2, 2) (3, 1) 101
V6 1 (3) (2) 101

V1 :

 1 4
2 5
3 6

 V2 :

 1 2
3 4
5 6

 V3 :

(
1 3 5
2 4 6

)

V4 :

(
1 2 3
4 5 6

)
V5 :

(
2 3
5 6

)
V6 : (2, 4, 6)
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The convenient access to sub-views is one of the main reasons why multi-
dimensional views are useful in practice.

As important as the construction of sub-views is the binding of coordinates.
If one coordinate in a d-dimensional view is bound to a value, the result is a
(d − 1)-dimensional view. In the above example, V6 arises from V3 by binding
coordinate 0 to the value 1. In general, coordinate binding works as follows:

Definition 5 (Coordinate Binding). Given a view V = (d, s, t, p0) with d 6=
0, a dimension j ∈ {0, . . . , d− 1} and a value x ∈ {0, . . . , sj − 1},

bind(V, j, x) := (d− 1, s′, t′, p′0) (4)

with s′ = (s0, . . . , sj−1, sj+1, . . . , sd−1), t′ = (t0, . . . , tj−1, tj+1, . . . , td−1) and
p′0 = aV (c) with c ∈ CV such that ∀k ∈ {0, . . . , d − 1} : ck = xδjk is said
to arise from V by binding coordinate j to the value x.

By Def. 4, sub-view(V, c, s′) has the same dimension as V . However, the shape
of the sub-view may be equal to one in some dimensions, i.e. s′j = 1 for some j.
Since 0 is the only admissible coordinate in these singleton dimensions, it makes
sense to bind such coordinates to 0. Binding the coordinates in all singleton
dimensions to 0 is called squeezing.

An operation that preserves both the dimension and the memory addressed
by a view is permutation. Permuting a view permutes the view’s shape and
strides, respectively:

Definition 6 (Permutation). The permutation of a non-degenerate view V =
(d, s, t, p0) w.r.t. a bijection σ : {0, . . . , d− 1} → {0, . . . , d− 1} is the view

permute(V, σ) := (d, s′, t′, p0) (5)

where s′, t′ ∈ Nd and ∀j ∈ {0, . . . , d− 1} : s′j = sσ(j) ∧ t′j = tσ(j).

Two special cases of permutations are transpositions and cyclic shifts. Trans-
positions exchange the shape and strides in only two dimensions. In the above
example, V1 and V4 are transposes of each other, and so are V2 and V3. Cyclic
shifts permute a view in a cyclic fashion. As an example, consider a 3-dimensional
view whose shape is (2, 3, 7). If this view is shifted by 1, the resulting view has
the shape (7, 2, 3), and a shift by -1 yields a view having the shape (3, 7, 2). In
general, cyclic shifts can be defined and computed as follows:

Definition 7 (Cyclic Shift). The cyclic shift of a non-degenerate view V =
(d, s, t, p0) w.r.t. z ∈ Z is the view

shift(V, z) :=


shift(V, z mod d) if d ≤ |z|
shift(V, z − d) if 0 < z < d

(d, s′, t′, p0) otherwise
(6)

with s′, t′ ∈ Nd and ∀j ∈ {0, . . . , d− 1} : s′j = s(j−z) mod d ∧ t′j = t(j−z) mod d.
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2.2 Scalar Indexing and Iterators

The coordinate tuples of a view can be put in some order. Imposing such an order
allows the programmer to access any data item under the view by a single index,
namely the index of the associated coordinate tuple in the given order. This is
useful in practice because it in turn allows us to handle sub-views as if they were
single-indexed containers holding a subset of data. Moreover, it facilitates the
definition of iterators [6] on views.

Among all possible orders that can be imposed on coordinate tuples, two are
most commonly used1. In the First Coordinate Major Order (FCMO), the first
coordinate is used as the strongest ordering criterion, meaning that one tuple is
greater than all tuples whose first coordinate is smaller. Coordinates at higher
dimensions are used for ordering only if all coordinates at lower dimensions are
equal. In the Last Coordinate Major Order (LCMO), the last coordinate is the
strongest ordering criterion. In the special case of 2-dimensional views, FCMO
and LCMO are called row-major order and column-major order, respectively.
These terms refer to the matrix notation of data under 2-dimensional views.
FCMO is used in native C arrays whereas LCMO is used in Fortran and MAT-
LAB. Both orders are defined implicitly by a function that maps coordinate
tuples to unique integer indices. One coordinate is smaller than another pre-
cisely if the associated index is smaller.

Definition 8 (Indexing). Given a view V = (d, s, t, p0) with d 6= 0 and a
coordinate c = (c0, . . . , cd−1) ∈ CV ,

fcmo(c) :=
d−1∑
j=0

ujcj with uj =
d−1∏
k=j+1

sk , (7)

lcmo(c) :=
d−1∑
j=0

ujcj with uj =
j−1∏
k=0

sk . (8)

are called the FCMO- and LCMO-index of c, respectively. Given that either
FCMO or LCMO is used, u0, . . . , ud−1 are called the shape strides of V .

As an example, consider a 3-dimensional view V = (d, s, t, p0). Herein, the
indices that correspond to a given coordinate c ∈ CV are computed according to

fcmo(c) = s1s2c0 + s2c1 + c2 ,

lcmo(c) = c0 + s0c1 + s0s1c2 .

The index that corresponds to a coordinate tuple can be computed according
to Def. 8. Conversely, the coordinates that correspond to a given FCMO- or
LCMO-index are computed by means of Alg. 1. Given that either FCMO or
LCMO is used, it can happen that the strides are equal to the shape strides of
1 Note, however, that more complex orders can be obtained by defining views with

specific strides.
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a view. Such views are called unstrided. In an unstrided view V = (d, s, t, p0),
the address that corresponds to an index x ∈ N0 is simply x + p0, whereas in
a strided view, one needs to compute first the coordinate c that corresponds to
the index x (Alg. 1) and then the address aV (c) (Def. 3).

Algorithm 1: IndexToCoordinates
Input: x ∈ N0 (index), (u0, . . . , ud−1) ∈ Nd (shape strides)
Output: (c0, . . . , cd−1) ∈ Nd (coordinates)
if u0 = 1 then

// LCMO
for j = d-1 to 0 do

cj ← bx/ujc;
x← x mod uj ;

end

else
// FCMO
for j = 0 to d-1 do

cj ← bx/ujc;
x← x mod uj ;

end

end

In summary, we have seen that views are powerful interfaces to address data
either by coordinates or by single indices. It is simple to obtain sub-views and
to bind and permute coordinates.

2.3 Arrays

A multi-dimensional array is a data structure whose interface is a view. While
views only reference data via their addressing function, arrays contain data.
In the following definition, the memory is modeled as a function µ that maps
addresses to memory content.

Definition 9 (Array). A d-dimensional array is a tuple (V, q, µ) such that
V = (d, s, t, p0) is a view, q ∈ {FCMO, LCMO}, V is unstrided w.r.t. q, and µ
is a function

µ :

p0, . . . , p0 +

d−1∏
j=0

sj

− 1

→ N . (9)

For each c ∈ CV , µ(aV (c)) is called the entry of the array at position c. Moreover,
|CV | is termed the array’s size.

Two transformations are defined on arrays, namely reshaping and resizing.
Reshaping can change the dimension and shape of an array while preserving its
size and entries.
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Definition 10 (Reshaping). Given an array A = ((d, s, t, p0), q, µ) as well as
d′ ∈ N, and s′ = (s0, . . . , sd′−1) such that

∏d′−1
j=0 s′j =

∏d−1
j=0 sj, the reshaping of

A w.r.t. s′ is the array

reshape(A, s′) := ((d, s′, t′, p0), q, µ) (10)

in which (d, s′, t′, p0) is a view that is unstrided w.r.t. q.

In fact, reshaping can not only be defined for arrays but also, more generally,
for unstrided views.

In constrast to reshaping, resizing can change the size and hence the interval
of memory of an array:

Definition 11 (Resizing). Given an array A = (V, q, µ), a new dimension
d′ ∈ N and a new shape s′ = (s0, . . . , sd′−1), an array (V ′, q, µ′) is called a
resizing of A w.r.t. s′, denoted resize(A, s′), if and only if the following conditions
hold:

(i) V ′ = (d′, s′, t′, p′0) is a view that is unstrided w.r.t. q. (Note that the offset
p′0 of the new array can differ from that of V due to a possible re-allocation of
memory).

(ii) entries of A are preserved according to the following rule:

∀(c, c′) ∈ D : µ(aV (c)) = µ′(aV ′(c′)) (11)

with

D = {(c, c′) ∈ CV × C ′V | ∀j ∈ {0, . . . ,min(d, d′)− 1} : cj = c′j

∧∀j ∈ {min(d, d′), . . . , d− 1} : cj = 0
∧∀j ∈ {min(d, d′), . . . , d′ − 1} : c′j = 0)}

Finally, all transformations of views can be used similarly with arrays.

3 Implementation

The definitions introduced above are implemented in C++ in the Marray package
[2]. Marray depends only on the C++ Standard Template Library (STL) [6].
The single header file marray.hxx is sufficient to use the package. This header
file contains the source code as well as reference documentation in the doxygen
format [1]. In addition to this file, we provide unit tests [11] in the file tests.cxx
as well as the reference documentation in HTML.

Five major class templates are defined in the namespace marray. These are
View, Marray, Matrix, Vector, and Iterator. Their organization is depicted in
Fig. 1. The Boolean template parameter isConst is used to determine whether
the data addressed by views and iterators is constant or mutable. This facilitates
a unified implementation for both cases without any redundancy in the code, cf.
[13]. The class templates Marray, Matrix, and Vector inherit the interface from
View<T, false>.
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Fig. 1. Class template hierarchy of the Marray package. The five major class
templates are View, Marray, Matrix, Vector, and Iterator. The Boolean template
parameter isConst is used to determine whether the data addressed by views
and iterators is constant or mutable.

3.1 Using Arrays

The simplest means to construct an array is a pair of iterators that point to the
beginning and the end of a sequence that determines the array’s shape:

size_t shape[] = {3, 2, 4};
marray::Marray<float> a(shape, shape+3);

Constructing matrices and vectors is even simpler and works as most program-
mers will expect, namely by providing the size and the number of rows and
columns, respectively:

marray::Vector<float> v(42);
marray::Matrix<float> m(7, 8);

In addition to the shape, one can specify an initial value for all array entries as
well as the order in which entries are stored, e.g.

marray::Marray<float> b(shape, shape+3, 1.0f,
marray::FirstMajorOrder);

By default, all entries of a marray::Marray<T> are initialized with T() and
are stored in Last Coordinate Major Order, cf. Section 2. Depending on the
application, the initialization of array entries is sometimes unnecessary and can
thus be skipped to improve performance. Initialization skipping works as follows:

size_t shape[] = {3, 2, 4};
marray::Marray<float> a(marray::SkipInitialization,

shape, shape+3);
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marray::Vector<float> v(marray::SkipInitialization, 42);
marray::Matrix<float> m(marray::SkipInitialization, 7, 8);

After construction, the dimension, size, shape, and storage order of an array
can be obtained as follows.

unsigned short dimension = a.dimension();
size_t size = a.size();
bool firstMajorOrder = a.firstMajorOrder();
marray::Vector<size_t> shape(dimension);
for(size_t j=0; j<dimension; ++j)

shape[j] = a.shape(j);

The entries of an array can be accessed in three different ways: by coordinates,
by single indices, and by means of STL compliant random access iterators, cf.
[6]. In fact, the following four assignments have the same effect on the array a.

// 1.
a(1, 0, 2) = 4.2f;
// 2.
size_t pos[] = {1, 0, 2};
a(pos) = 4.2f;
// 3.
a(13) = 4.2f;
// 4.
marray::Marray<float>::iterator it = a.begin();
it[13] = 4.2f;

It can sometimes be useful to print the entries of an array to std::cout.
This can be done using

std::cout << a.asString(marray::TableStyle);
std::cout << a.asString(marray::MatrixStyle);
std::cout << a.asString(); // MatrixStyle is the default

In table style output, each printed row consists of a coordinate tuple and the
corresponding array entry. In the more compact matrix notation only the entries
of the array are printed.

Both the shape and the size of an array can be changed at runtime. Reshaping
modifies an array’s shape and dimension while preserving its size. Resizing can in
addition cause the amount of memory allocated by the array to grow or shrink.

size_t newShape[] = {2, 2, 3, 2};
a.reshape(newShape, newShape+4);
newShape[0] = 4;
a.resize(newShape, newShape+4);

The function resize can alternatively be called with a third parameter that
specifies the initial value for newly allocated entries. For matrices and vectors,
reshaping and resizing works as follows:
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v.resize(56);
m.reshape(8, 7);
m.resize(2, 4);

It can sometimes be useful to permute the dimensions of an array, e.g. to
transpose a matrix. Three functions, permute, transpose, and shift serve this
purpose. While permute deals with the most general case of permuting dimen-
sions in any desired way, transpose with two parameters swaps any two di-
mensions, transpose with no parameters reverses the order of dimensions, and
shift shifts them in a cyclic fashion. No matter which function is used, only the
array’s interface is adjusted; no data is moved or copied.

size_t shape[] = {3, 2, 4};
marray::Marray<float> c(shape, shape+3);
size_t permutation[] = {1, 0, 2};
c.permute(permutation); // (2, 3, 4)
c.transpose(0, 2); // (4, 3, 2)
c.shift(-1); // (3, 2, 4)
c.shift(2); // (2, 4, 3)
c.transpose(); // (3, 4, 2)

Finally, the arithmetic operators +, -, *, /, +=, -=, *=, /= are defined. They
operate on an array and its entry data type (in any order), as well as on pairs
of arrays that have the same shape. In the latter case, the operation is per-
formed on each pair of entries, for every coordinate. In summary, this allows the
programmer to use arithmetic expressions like these:

marray::Marray<float> d;
d = -a + 0.5f*a - 0.25f*a*a;
d = 1.0f / (1.0f + a*a);
d = (a /= 2.0f);
--a;

3.2 Using Views

Arrays, including matrices and vectors, are containers. Views are interfaces that
allow the programmer to access data as if it was stored in an array. A view
can be constructed either as a sub-view of another view or array, or directly
on an interval of memory. In the following example, a 2-dimensional sub-view
is constructed that ranges from position (3, 2, 4) to position (7, 2, 8) in a 3-
dimensional array.

size_t shape[] = {20, 20, 20};
marray::Marray<float> d(shape, shape+3);
size_t base[] = {3, 2, 4};
size_t subShape[] = {5, 1, 5};
marray::View<float> v = d.view(base, subShape);
v.squeeze(); // collapse singleton dimension
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Each view defines an internal order of coordinates, either First or Last Coor-
dinate Major Order. This order determines how an iterator traverses the view as
well as how single indices are mapped to coordinates, e.g. which entry of d in the
above example is referenced by, say, v(7). The coordinate order of a sub-view
need not be the same as the coordinate order of the view based on which it is
constructed, although this is the default. Instead, it is possible to specify the
coordinate order of sub-views explicitly, e.g.

marray::View<float> v =
d.view(base, subShape, marray::FirstMajorOrder);

This facilitates the construction of sub-views that behave exactly like the views
or arrays on which they are based, except that the coordinate order is reverted:

marray::Vector<size_t> base(d.dimension());
marray::Vector<size_t> subShape(d.dimension());
for(size_t j=0; j<d.dimension(); ++j)

subShape(j) = d.shape(j);
marray::View<float> v = d.view(base.begin(), subShape.begin(),

marray::FirstMajorOrder);

Views can be constructed directly on an interval of memory. If all data in
this interval is to be referenced by the view, i.e. if the view is to be unstrided
(cf. Section 2), it is sufficient to provide the view’s shape and a pointer to the
beginning of the data.

float data[24];
size_t shape[] = {3, 2, 4};
marray::View<float> w(shape, shape+3, data);

The same constructor can be used with two additional parameters,

marray::View<float> w(shape, shape+3, data,
marray::LastMajorOrder, marray::FirstMajorOrder);

These parameters specify the external coordinate order based on which the
strides of the view are computed as well as the internal coordinate order that is
used for indexing and iterators. By default, Last Coordinate Major Order is used
for both. Views on constant data are constructed similar to views on mutable
data, e.g.

marray::View<float, marray::Const> w(shape, shape+3, data);

Constructing unstrided views is only the simplest case. In general, the strides as
well as the offset of a view (cf. Section 2) can be set explicitly, e.g.

size_t shape[] = {3, 2, 4};
size_t strides[] = {2, 1, 6};
size_t offset = 0;
marray::View<float> w(shape, shape+3, strides, data, offset,

marray::FirstMajorOrder);
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The data under a view is accessed similar to the entries of arrays, i.e. by
coordinates, by single indices, or by means of iterators. Coordinate permutation
works on views exactly the same way it works on arrays. A sub-view where one
coordinates is bound to a certain value can be obtained as follows:

marray::View<float> x = w.boundView(2, 1);
// binds dimension 2 to coordinate 1

The member functions reshape, permute, transpose, shift, and squeeze
transform the view for which they are called. They are complemented by member
functions called reshapedView, permutedView, etc. that leave the view for which
they are called unchanged and return a new view that is transformed in the
desired way. The latter functions are first of all convenient but they also resemble
the way transformations are implemented in Boost for views whose dimension
is fixed at runtime. In fact, all operations that change the dimension of a view
need to be implemented in this way if the dimension of the view is a template
parameter because the data type changes together with the dimension.

All arithmetic operators are defined on views. Assigning a view x to a view
on mutable data y via y = x copies the data under x to the memory addressed
by y, provided that x and y have the same shape. The copy is performed per
coordinate, not per scalar index or iterator. Potiential memory overlaps between
the two views x and y are taken care of. Data is copied if necessary, in an
assignment y = x, as well as in in-place operations such as x += y. Assigning a
view x to a view on constant data z copies the view, not the data. This is useful
to recycle the memory allocated for a view on constant data.

In summary, the views, arrays, matrices, and vectors provided in the Marray
package behave exactly like STL containers [6] in terms of their fundamental
interface. Additional functions going beyond the interface of STL containers
allow the programmer to adjust the dimension, shape, strides, as well as the
storage order at runtime.

3.3 Invariants

For the sake of runtime performance, some redundancy is built into the view
classes. In particular, the size and the shape strides of views are stored explicitly
as attributes although they could be computed on demand from the shape and
the internal order of coordinates. An additional Boolean flag indicates whether
a view is unstrided and has a zero offset. This flag supports the fast copying
of data via memcpy, provided that views do not overlap. In case of overlap, the
necessary temporary copy is created internally.

The redundant attributes need to be kept consistent under all possible trans-
formations of views and arrays. The private member functions testInvariant()
check for consistency. They are called after any transformation in debug mode.
The reader is encouraged to look these functions up in the source code. Since
views and arrays are fundamental data structures that should work at peak
performance in released code, it is important that all tests can be removed. A
function proposed by Stroustrup [15] is used to meet this requirement.
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template<class A> inline void Assert(A assertion) {
if(!assertion)

throw std::runtime_error("Assertion failed.");
}

Along with this function, the Boolean constants NO_DEBUG and NO_ARG_TEST are
defined in the namespace marray. Invariant testing and the testing of function
arguments is conditioned on these variables, e.g.

Assert(NO_DEBUG || this->dimension_ > 0);
Assert(NO_ARG_TEST || std::distance(begin, end) != 0);

In consequence, compilers will remove the respective tests if NO_DEBUG and
NO_ARG_TEST are set to true. By default, both variables are set in accordance
with NDEBUG.

3.4 C++0x Extensions

Features of the C++0x standard proposal [16] facilitate three highly desirable
extensions whose implementation in C++98 would have drawbacks. The C++0x
code is part of the Marray package. However, since C++0x is not yet approved,
these extensions are considered experimental and have to be enabled explicitly
by defining the variables

HAVE_CPP0X_TEMPLATE_TYPEDEFS
HAVE_CPP0X_VARIADIC_TEMPLATES
HAVE_CPP0X_INITIALIZER_LISTS

Template Aliases Views are declared as class templates in the namespace
marray:

template<class T, bool isConst = false> class View;

To support the writing of self-explanatory code, the constants Const = true
and Mutable = false are defined. Still, having to write

marray::View<float, marray::Const> v;

to declare a view on constant data is perhaps not what a programmer would
guess. We could have implemented a class template ConstView separately. How-
ever, even with inheritance, this would have led to excessive redundancy in the
code that would have made the implementation error prone and hard to main-
tain [18]. C++0x [16] provides an elegant solution, namely the definition of the
template alias [14]

template<class T> using ConstView = View<T, true>;

This alias allows the programmer to construct a view on constant data in a
straightforward way:

marray::ConstView<float> v;
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Variadic Templates The entries of views and arrays can be accessed by coor-
dinates. For the sake of convenience, it should be possible for the programmer
to use operator() with any number of parameters.

C++98 has inherited from C a syntax for functions whose number of param-
eters is unspecified at compile time. However, this mechanism is not type safe
[15] and its use is therefore discouraged. In the C++98 compatible part of the
code, we thus make a compromise and implement the operator in a type safe
manner for up to four parameters. A runtime error is issued if the wrong instance
is used. Beyond four dimensions, operator() can be used with one argument,
an iterator to a coordinate sequence.

C++0x defines variadic templates [9, 10] that allow us to recursively define
operator() in a type safe manner for any number of parameters. We quote here
the main recursive declaration and refer to the source code for details.

template<typename... Args>
reference_type operator()(const size_t &&,

const Args && ...);
reference_type operator()(const size_t &&);

Initializer Lists Constructors and member functions of Marray classes take
iterators into coordinate sequences as input. One iterator that points to the
beginning of the sequence is sufficient if the length of the sequence can be de-
rived, e.g. in the member function permute of View. Iterator pairs are required
otherwise, e.g. in the member function resize of Marray. Iterators are used
excessively in the STL, so most programmers will find them familiar. However,
the use of iterators and iterator pairs is cumbersome if sequences are known at
compile time. In fact, neither of the following alternatives is really convenient:

size_t shape[] = {4, 2, 3};
marray::Marray<float> a(shape, shape+3);

std::vector<size_t> shape(3);
shape[0] = 4;
shape[1] = 2;
shape[2] = 3;
marray::Marray<float> a(shape.begin(), shape.end());

C++0x defines initializer lists [17] that allow us to overload functions such
that the programmer can simply write

marray::Marray<float> a({4, 2, 3});

4 Conclusion

We provide C++ class templates for multi-dimensional views and arrays whose
dimension, shape, and size can change at runtime. The C++98 interface of these
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templates is as convenient as in the best implementations of arrays with fixed
dimensions. Usability is further improved by C++0x extensions. Our software
is free and publicly available [2]. We are currently examining different ways of
establishing compatibility with the multi-dimensional arrays that are native to
C and are working on an HDF5 interface.
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