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Abstract. The purpose of image segmentation is to partition the pixel
grid of an image into connected components termed segments such that
(i) each segment is homogenous and (ii) for any pair of adjacent seg-
ments, their union is not homogenous. (If it were homogenous the seg-
ments should be merged). We propose a rigorous definition of segment
homogeneity which is scale-free and adaptive to the geometry of seg-
ments. We motivate this definition using random walk theory and show
how segment homogeneity facilitates the quantification of violations of
the conditions (i) and (ii) which are referred to as under-segmentation
and over-segmentation, respectively. We describe the theoretical founda-
tions of our approach and present a proof of concept on a few natural
images.

1 Introduction and Related Work

Image segmentation is an important step in many applications, sometimes even
the ultimate goal of the analysis. It remains a challenging problem which re-
quires the search for an optimal partition of the pixel grid of an image. Even
under simple model assumptions, this problem is NP-hard [13]. The task of im-
age segmentation has thus been addressed by various constructive algorithms,
e.g., watershed segmentation [11] as well as by spectral methods such as nor-
malized cuts [13]. All segmentation algorithms have design parameters which
need to be tuned for each specific application. Hence, a quantitative validation
of segmentations is all the more important. Given a segmentation, there are two
possible types of errors: (i) under-segmentation – a segment contains parts which
belong to different regions and should be split; (ii) over-segmentation, two ad-
jacent segments in fact belong to the same region and should be merged. Most
image segmentations suffer from at least one if not both types of errors.

It is thus desirable to develop a quantitative tool to assess the quality of each
individual segment, and to provide a diagnostic measure of whether a given seg-
ment should be split, or whether two adjacent segments should be joined. In
an interactive segmentation framework, this measure has the potential to fo-
cus user attention on segmentation errors whereas in an automated procedure,
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J. Denzler, G. Notni, and H. Süße (Eds.): DAGM 2009, LNCS 5748, pp. 502–511, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Quantitative Assessment of Image Segmentation Quality 503

incorrect segments can be subjected to further processing. In this paper, we
develop such a measure. A key feature of this measure is scale-invariance. It
can therefore be applied to both small and large segments. As a proof of con-
cept, we present results on segmentations of Berkeley database images [8]. Both
watershed segmentation [11] and a graph-based segmentation algorithm [2] are
used to illustrate that the method works with any segmentation. The only pre-
requisite is a boundary indicator function b giving the probability b(r1, r2) that
adjacent pixels r1, r2 are separeted by a boundary. A simple way to obtain such
a function is to interpolate the output of an edge detector to inter-pixel posi-
tions and then normalize the result. Given an image annotation, i.e. a function
a with a(r, c) the probability that the pixel r is associated with class c (e.g. sky,
ground, car, building), b(r1, r2) can be a distance of the distributions a(r1, ·) and
a(r2, ·).

The measure of segment homogeneity we propose is based on the spectral
analysis of random walks on weighted graphs. Random walks on graphs are the
foundation of diffusion distances and diffusion maps [14,1] which have been ap-
plied for clustering, dimensionality reduction and signal denoising. The close
relation between random walks and normalized cuts [13] is noted in [9,10]. Ran-
dom walks have recently been used for interactive image segmentation [4,5,6].
Similar to [4,5,6], we consider weighted graphs in which vertices represent im-
age pixels and edges connect neighboring pixels. The novelty we propose is to
relate the relaxation time of a random walk on a weighted graph to the relax-
ation time on the topologically identical graph with all weights set to an equal
value. This approach facilitates scale-invariance and adaptivity to the geometry
of segments.

2 Segment Homogeneity

In this section, the spectral analysis of random walks on graphs is outlined first,
followed by the description of the particular graphs we consider for segmentation
analysis. A rigorous definition of segment homogeneity is given at the end.

Consider an undirected weighted graph G = (V,E, s) with the edge weight
function s : E → (0, 1]. Interpret this function as a measure of similarity of the
two vertices which are incident to the edge. Let V be finite and identify each
vertex with a positive integer, V = {1, . . . , n}. Let S ∈ IRn×n be the similarity
matrix of the graph G with

Sjk =

{
s({j, k}) if {j, k} ∈ E

δjk otherwise
(1)

In addition, define the degree of any vertex j ∈ V as the sum of weights of all
edges which are incident to j, i.e.

deg : V → IR such that ∀j ∈ V : deg(j) =
∑
k∈V

Sjk . (2)
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Let D ∈ IRn×n be the diagonal matrix with ∀j ∈ V : Djj = deg(j) and let

M = D−1S . (3)

M is obtained from S by an L1-normalization of each row and is thus a row-
stochastic matrix. M is adjoint to the symmetric matrix Ms = D1/2SD−1/2.
Thus, M and Ms share the same eigenvalues. Moreover, since Ms is symmetric,
the matrix has n real eigenvalues λ1, . . . , λn whose corresponding eigenvectors
v1, . . . , vn form an orthonormal basis of IRn. The left and right eigenvectors of
M denoted φj and ψj are related to those of Ms according to

φj = vjD
1/2, ψj = vjD

−1/2 . (4)

As the eigenvectors vj are orthonormal under the standard innner product in
IRn, it follows that φj and ψj are bi-orthonormal, i.e. 〈φj , ψk〉 = δjk. One nor-
malized eigenvector of M is (1, . . . , 1)T /

√
n and the corresponding eigenvalue

is 1. In addition, no eigenvalue of a stochastic matrix can be larger than one
in magnitude (this is a consequence of the Gelfand spectral radius theorem, cf.
[12]). Thus, the eigenvalues λ1, . . . , λn can be ordered such that

1 = |λ1| ≥ . . . ≥ |λn| ≥ 0 . (5)

A random walk on the weighted graph G is a discrete stochastic process whose
states are the vertices of G. Let P (Xt = j) denote the probability that the
process attains the state j ∈ V at the discrete point t ∈ IN0 in time. Assume
that the process is Markovian, i.e. the probability of moving from a vertex j ∈ V
to a vertex k ∈ V does not depend on the history of the process,

∀t ∈ IN0 : P (Xt+1|Xt, . . . , X0) = P (Xt+1|Xt) . (6)

In addition, let the transition probabilities be given by the matrix M ,

∀t ∈ IN0 ∀j, k ∈ V : P (Xt+1 = k|Xt = j) = Mjk . (7)

The evolution of the random walk is then given by the repeated multiplication
of the transition matrix M with the probability row vector of the initial state,

P (Xt) = P (Xt−1)M = P (Xt−2)M2 = . . . = P (X0)M t . (8)

This evolution is elucidated by the spectral decomposition of M :

M t =

⎛
⎝ n∑

j=1

λjφjψ
T
j

⎞
⎠

t

=
n∑

j=1

λt
jφjψ

T
j = φ1ψ

T
1 +

n∑
j=2

λt
jφjψ

T
j . (9)

If, for any sufficiently large number of steps, any vertex in the graph is reachable
from any other vertex via a sequence of edges, the process is called irreducible.
If, for any large enough number of steps, the probability of returning to the start
vertex is non-zero, the process is called aperiodic. If a process is both aperiodic
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and irreducible, there exists a t0 ∈ IN such that for all t ∈ IN>t0 , M t is a
positive matrix. It then follows from Perron’s theorem [7] that |λ2| < 1 and thus
M t → φ1ψ

T
1 as t→ ∞. The rate of convergence depends on |λ2|. We refer to

τ :=
1

1 − |λ2| (10)

as the characteristic relaxation time of the random walk. Since M is a square,
sparse matrix, λ2 can be efficiently computed using the Lanczos algorithm [3].

Consider the pixel grid Γ and the 8-neighborhood system of pixels which we de-
note by∼. For any subset of pixelsU ⊆ Γ , let pairs(U) be the set of all (unordered)
pairs of pixels of U which are 8-neighbors, pairs(U) := {{u, u′} ⊆ U |u ∼ u′}. We
consider segmentation algorithms which output a numberm ∈ IN of segments and
a function seg : Γ → {1, . . . ,m} which maps any pixel to the index of a segment.
Our goal is to provide a quantitative measure of segment homogeneity. To this
end, we consider two different random walks on each candidate segment. First, we
study the geometric properties of the segment, and second the possible presence
of significant inner boundaries in it. For any segment j ∈ {1, . . . ,m}, we construct
the weighted graph Gj = (Vj , Ej , sj) where Vj = seg−1(j) consists of all pixels of
the segment,Ej = pairs(Vj) is the set of all pairs of pixels in the segment which are
8-neighbors, and sj is a similarity measure. An example is depicted in Fig. 1. First,
we chose sj such that all edge weights are equal, which yields a graph that depends
exclusively on the size and shape of the segment and is independent of the bound-
ary indicator function. We term this graph the geometric graph of the segment and
denote the relaxation time of the associated random walk by τg (geometric relax-
ation time). Second, we define sj depending on the boundary indicator. Since we
consider similarity graphs (as opposed to the dissimilarity measured by the bound-
ary indicator), we invert the indicator by the function f(x) = 1 − (1 − s0)x. The
design parameter s0 ∈ [0, 1] sets the minimal permitted similarity of neighboring
pixels. A positive value s0 > 0 ensures irreducibility of the random walk associ-
ated with the weighted graph. Such a simple linear transform is sufficient if the
boundary indicator function is appropriately scaled. Otherwise, the exponential
function f(x) = exp(−αx) can be used with α adapted to the scale of b. We denote
the relaxation time of the random walk associated with the weighted graph by τw
and define segment homogeneity as the ratio

H :=
τw
τg

. (11)

Under-segmentation is quantified by computingH for each segment. If a segment
is split by a boundary, the random walk on the weighted graph stays trapped
inside one sub-region, or “well”, of the segment for a long time and only occa-
sionally escapes across a boundary into another sub-region. Thus, it takes longer
for the random walk to converge to the stationary distribution on the weighted
graph than it does on the graph with equal weights. Hence, H � 1 is indica-
tive of under-segmentation. Conversely, H = 1 holds for homogenous segments,
regardless of their size and shape. H thus constitutes a scale-free measure of
segment homogeneity.
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Fig. 1. Similarity graph of a simple segment consisting of seven pixels. Each pixel
corresponds to one vertex (enumerated circles). Edges (gray lines) connect any two
pixels which are 8-neighbors. A similarity Sjk is associated with every edge.

In over-segmentation analysis, all pairs (V1, V2) of adjacent segments are con-
sidered and for each of these pairs,H is computed on the merged segment V1∪V2.
A homogenous pair is indicative of over-segmentation. V1 and V2 should thus be
merged if H ≈ 1.

3 Experiments

To illustrate the principle, the two segments depicted in the rows of Fig. 2
exemplify the under-segmentation analysis. In the first column, the segment itself
is depicted in black, indicating that the boundary indicator is zero throughout
the segment. Consequently, τg = τw and hence, H = 1. In the second and third
column, the segment is split by a boundary depicted in gray. In these cases,
H > 1 quantifies the degree of under-segmentation. In the fourth column, there
is a pronounced boundary which does however not split the segment. H is very
close to one in this case because τw differs only slightly from τg. This property
of H is essential for segmentation analysis where split segments must not be
confused with segments that include non-splitting boundaries.

In order to quantify the under-segmentation of natural images of the Berkeley
database [8], the boundary indicator function was taken to be the normalized
squared gradient magnitude of the three channels of the L*a*b* color space.
Figures 4 and 5 show segmentations obtained from this boundary indicator by
means of a seeded region growing variant of the watershed algorithm [11]. Seeds
were set at those points of a regular grid (with a grid point distance of 15
pixels) where the normalized boundary indicator did not exceed 0.4. Under-
segmentation thus occurs especially if no seed is placed inside an object in the
image. In Fig. 4, a coarse, graph-based segmentation (cf. [2]) is shown in addi-
tion, stressing that the measure of segment homogeneity is scale-free and can
be used with any segmentation algorithm. Along with the segmentations, H is
depicted for each segment in shades of gray. Under-segmentation occurs in those
segments for which H is much larger than 1. The distribution of relaxation
times for the watershed segmentation shown in Fig. 4 is depicted in Fig. 3a. Ho-
mogenous segments are concentrated along the diagonal which means that the
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relaxation times are similar (H ≈ 1). Segments which are to be split lie signifi-
cantly above the diagonal (H � 1). It can happen that τw < τg if the weighted
graph distributes the random walk faster than equal weights do. Clearly, this is
not the case if a segment is split, so H < 1 can be taken as a strong indica-
tion of not having under-segmentation. Over-segmentation as depicted in Fig.
6 is a well-known property of the watershed algorithm where regions are grown
from all local minima of the boundary indicator function. Along with the seg-
mentation, a boundary map is depicted. The shade of a boundary separating
two segments V1 and V2 is proportional to the segment homogeneity H of the
merged pair V1 ∪ V2. White (removed) boundaries indicate over-segmentation.
The corresponding distribution of relaxation times is depicted in Fig. 3b.

H = 1 H = 1.15 H = 1.57 H = 1.03

H = 1 H = 1.13 H = 1.71 H = 1.09

Fig. 2. Illustration of two segments (rows) and four different boundary indicator func-
tions on these segments (columns). The gray edges inside of the segments indicate a
boundary probability of 0.6. Segments which are split by boundaries exhibit a segment
homogeneity H > 1 whereas H ≈ 1 for segments which are not split.
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Fig. 3. a) Relaxation times τg and τw of all segments of Fig. 4. Points close to the
diagonal correspond to homogenous segments. Points significantly above the diago-
nal indicate under-segmentation. b) Relaxation times of all merged pairs of adjacent
segments of Fig. 6. Points on the diagonal indicate over-segmentation.
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Fig. 4. Quantification of under-segmentation. One fine watershed-segmentation and
one coarser graph-based segmentation [2] are shown. For each segment, its homogeneity
H is depicted in shades of gray. Under-segmentation occurs in those darker segments
for which H is significantly larger than 1.
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Fig. 5. Quantification of under-segmentation (continued)
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Fig. 6. Quantification of over-segmentation. Each boundary in the lower plot corre-
sponds to a pair (V1, V2) of segments which are adjacent via that boundary. The shade
of a boundary is proportional to the segment homogeneity H of the merged pair V1∪V2.
Black corresponds to high values, white corresponds to H ≤ 1. White (removed) bound-
aries indicate over-segmentation.
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4 Conclusion

In this paper, we developed a quantitative measure of segment homogeneity,
based on random walks. Random walks on two different segment graphs were
considered: A weighted graph with weights obtained from a boundary indicator
function and a graph where all weights are set to an equal value. Segment ho-
mogeneity was defined as the ratio of the relaxation times of these two random
walks. This definition is scale-free and adaptive to the geometry of segments.
It facilitates the quantitative assessment of segmentation quality, in particular
the quantification of under- and over-segmentation. We are currently applying
the concept to 3D segmentations and explore its potential as a criterion in an
unsupervised split-and-merge segmentation algorithm.
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