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Abstract. This contribution presents a novel approach to the challeng-
ing problem of model selection in motion estimation from sequences of
images. New light is cast on parametric models of local optical flow.
These models give rise to parameter estimation problems with highly
correlated errors in variables (EIV). Regression is hence performed by
equilibrated total least squares. The authors suggest to adaptively select
motion models by testing local empirical regression residuals to be in ac-
cordance with the probability distribution that is theoretically predicted
by the EIV model. Motion estimation with residual-based model selec-
tion is examined on artificial sequences designed to test specifically for
the properties of the model selection process. These simulations indicate
a good performance in the exclusion of inappropriate models and yield
promising results in model complexity control.

1 Introduction and Related Work

In their well-known contribution [1], Black and Jepson propose to estimate op-
tical flow independently for segmented spatiotemporal regions. Parameters of
optical flow models are hence allowed to depend on non-trivial subsets of the
spatiotemporal volume. The exploitation of the full potential of this approach
involves the three challenging problems of motion segmentation, noise estima-
tion and motion model selection. These problems are connected by the fact
that violations of suitable models that exceed the scale of noise indicate seg-
ment borders. Gheissari et al. [2] comprehensively discuss this interrelation and
demonstrate how local optical flow estimation, motion segmentation and motion
model selection can be incorporated into an unsupervised motion segmentation
framework. This paper focuses on the selection of suitable parametric optical
flow models. While a simple model fails to approximate data of higher intrinsic
complexity under low noise conditions, a complex model is prone to over-fitting
in the presence of noise. Various information criteria have been proposed that
penalize model complexity in order to avoid over-fitting. Among the most pop-
ular are Akaike’s Information Criterion [3] as well as the Bayesian Information
Criterion [4]. In the context of motion estimation, the model selection problem
has been discussed by Wechsler et al. [5] as well as by Gheissari et al. [2]. How-
ever, “[. . . ] none of the existing model selection criteria is capable of reliably
identifying the true underlying model [. . . ]. The main reason is that the available
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information theoretic model selection criteria are based on the assumptions that
noise is very small and the data size is large enough” [2]. Hence, Gheissari et al.
suggest to consider the constraint surfaces of parametric models as thin plates
and to penalize the strain energy of these plates according to a physical model.
They show a successful application of this surface selection criterion (SSC) in
a motion segmentation framework. As the SSC incorporates only second order
derivatives of the model surfaces, it cannot be used to distinguish different lin-
ear models. Moreover, if information on the distribution of noise is available
from camera calibration measurements or noise estimation, probabilistic model
selection criteria that incorporate this information should be employed. This pa-
per is intended to fill the gap between information theoretic penalization and
heuristic surface modeling. Following the general idea of Cootes et al. [6], we
suggest to assess parametric optical flow models by measuring the discrepancy
between the empirical distribution of regression residuals and the probability
density function (PDF) predicted from theory. This paper is organized as fol-
lows. In the next section, we formalize the concept of local optical flow to cast
new light on the interrelation of optical flow estimation, motion segmentation
and motion model selection. In terms of local optical flow, we then outline in
section 3 the specifics of parameter estimation with respect to motion model se-
lection. This includes equilibrated total least squares (ETLS) estimation under
a suitably defined Errors-in-Variables (EIV) model. In section 4, the probabil-
ity distribution of regression residuals is derived from the EIV model. Section
5 deals with simulations conducted to test the proposed model selector for its
specific properties. We applied this method to artificial sequences featuring gray
value structure on multiple scales. Real world video data as well as standard
benchmark sequences such as the Yosemite sequence are not suitable to test for
the specifics of model selection as the model selector has no intrinsic capability
of overcoming the aperture problem.

2 Local Optical Flow

We formalize the concept of local optical flow in order to strengthen the in-
terrelation of optical flow estimation, motion segmentation and motion model
selection. If nx, ny, nt, nc ∈ IN, P = {1, . . . , nx} × {1, . . . , ny} × {1, . . . , nt} and
C = {0, . . . , nc} then, the mapping g : P → C shall be referred to as an ir-
radiance signal. Moreover, any mapping g : IR3 → IR shall be termed an ideal
irradiance signal. Herein, for x ∈ P , g(x, y, t) may represent the mean irradi-
ance onto the pixel indicated by (x, y) over the time interval indicated by t as
measured with the finite intensity range and resolution given by C [7].

Definition 1 (Optical Flow). Let g : IR3 → IR be an ideal irradiance signal
such that the first partial derivatives of g exist and let (u, v)T : IR3 → IR2. Then,
(u, v)T shall be referred to as a field of optical flow precisely if

∂tg + u∂xg + v∂yg = 0 (1)

holds, which is is the well-known brightness change constraint equation (BCCE).
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Definition 2 (Local Optical Flow). Let g : IR3 → IR be an ideal irradiance
signal such that the first partial derivatives of g exist and let (u, v)T : IR3×IR3 →
IR2. Moreover, let ω : IR3 × IR3 → IR+

0 such that ∀x ∈ IR3 : ω(x, x) > 0. Then,
(u, v)T shall be referred to as a field of local optical flow with respect to ω
precisely if

∀x, x′ ∈ IR3 : ω(x, x′)(∂tg(x′) + u(x, x′)∂xg(x′) + v(x, x′)∂yg(x′)) = 0 . (2)

The mapping ω shall then be referred to as an aperture function and, for all
x ∈ IR3, the set Uω(x) := {x′ ∈ IR3|ω(x, x′) > 0} shall be termed the motion
neighborhood of x. In this paper, we refer to (2) as the local brightness change
constraint equation (LBCCE).

(Local) optical flow is often considered in conjunction with parametric models
of u and v of which the parameters are estimated such that (1) and (2), respec-
tively hold approximately. A way of looking at the definition of local optical
flow is the following: Fix an x ∈ IR3. Now, the estimation of (u, v)T from the
LBCCE for x is indeed the estimation of optical flow (u′, v′)T : IR3 → IR2 at
this pixel on the data Uω(x) namely, ∀x′ ∈ IR3 : u′(x′) = u(x, x′) ∧ v′(x′) =
v(x, x′). Moreover, local optical flow (u, v)T : IR3 × IR3 → IR2 comprises opti-
cal flow (u′, v′)T : IR3 → IR2 as the special case in which it is assumed that
∀x, x′ ∈ IR3 : u(x, x′) = u′(x′) ∧ v(x, x′) = v′(x′) i.e., for all x′ ∈ IR3,
(u(x, x′), v(x, x′)) is independent of x. The generality of the LBCCE affords
that Uω(x) need not be, for instance, topologically connected and that, for
x1, x2 ∈ IR3 such that x1 �= x2, Uω(x1) and Uω(x2) need neither be disjoint
nor otherwise related. The aim in motion segmentation is to find a suitable
aperture function ω that partitions the preimage of the irradiance signal i.e.,
∀x1, x2 ∈ IR3 : Uω(x1) = Uω(x2) ∨ Uω(x1) ∩ Uω(x2) = ∅. In terms of local
optical flow, the classical approach by Lucas and Kanade [8], to estimate op-
tical flow for small identical spatiotemporal neighborhoods of each pixel, is to
consider, for a given extension ds, dt ∈ IR+

0 of these neighborhoods, the aper-
ture function ω such that ∀(x, y, t)T , (x′, y′, t′)T ∈ IR3: ω((x, y, t), (x′, y′, t′)) =
Θ(ds − |x′ − x|)Θ(ds − |y′ − y|)Θ(dt − |t′ − t|) (with Θ denoting the Heaviside
step function). Black and Jepson [1] investigate several parametric models of
local optical flow, among these the local planarity assumption.

Definition 3 (Local Planarity (LPL)). Let (u, v)T : IR3 × IR3 → IR2 and
ω : IR3 × IR3 → IR+

0 . Then, (u, v)T shall be called locally planar with respect to
ω precisely if ∃p1, . . . , p8 : IR3 → IR ∀(x, y, t)T = x ∈ IR3 ∀(x′, y′, t′)T = x′ ∈
Uω(x): (

u(x, x′)
v(x, x′)

)
=

(
p1(x)
p2(x)

)
+

(
p3(x) p4(x)
p5(x) p6(x)

) (
x′ − x
y′ − y

)

+
(

(x′ − x)2 (x′ − x)(y′ − y)
(x′ − x)(y′ − y) (y′ − y)2

) (
p7(x)
p8(x)

)
. (3)

More restrictive models are obtained from LPL by imposing constraints on the
parameter functions such as those to be found in Table 1. Given the LPL model,
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Table 1. Parametric local optical flow models obtained from restrictions imposed on
LPL. k indicates the number of parameter functions.

Code k Description Restriction on LPL
LPL 8 Planar none
LAF 6 Affine p1 = p2 = 0
LDR 4 Divergence and Rotation p1 = p2 = 0, p3 = p6, p4 = −p5

LSS 4 Stretch and Shear p1 = p2 = 0, p3 = −p6, p4 = p5

LC 2 Constant p1 = p2 = p3 = p4 = p5 = p6 = 0

define ag : IR3 × IR3 → IR8, bg : IR3 × IR3 → IR and p : IR3 → IR8 such that
p := (p1, . . . , p8)T and ∀(x, y, t)T = x, (x′, y′, t′)T = x′ ∈ IR3:

ag(x, x′) := ω(x, x′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂xg(x′)
∂yg(x′)

(x′ − x)∂xg(x′)
(y′ − y)∂xg(x′)
(x′ − x)∂yg(x′)
(y′ − y)∂yg(x′)

(x′ − x)2∂xg(x′) + (x′ − x)(y′ − y)∂yg(x′)
(x′ − x)(y′ − y)∂xg(x′) + (y′ − y)2∂yg(x′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

bg(x, x′) := −ω(x, x′)∂tg(x′) . (5)

Then, the LBCCE shall be written as

∀x, x′ ∈ IR3 : aT
g (x, x′)p(x) = bg(x, x′) . (6)

Analogous definitions of ag, bg and p exist for the parametric models LAF, LDR,
LSS and LC. Optimized linear shift invariant (LSI) operators with finite impulse
response (FIR) [9] are used to compute derivatives of (non-ideal) irradiance
signals. The preimage of such a signal is finite and so is hence Uω(x) for all
x ∈ P 1. Finiteness allows to express (6) as a set of systems of equations.

Definition & Proposition 4 (LPL Data). Let g : P → C be an irradiance
signal, ω : P × P → IR+

0 such that ∀x ∈ P : ω(x, x) > 0. Let ∀x ∈ P : Uω(x) =
{x′ ∈ P |ω(x, x′) > 0}, m : P → IN and ∀x ∈ P : x′

1, . . . , x
′
m(x) such that

{x′
1, . . . , x

′
m(x)} = Uω(x). Moreover, consider ag and bg as defined in (4) and

(5), respectively. Then,

Ag(x) :=

⎡
⎣ aT

g (x, x′
1)

· · ·
aT

g (x, x′
m(x))

⎤
⎦ and bg(x) :=

⎡
⎣ bg(x, x′

1)
· · ·

bg(x, x′
m(x))

⎤
⎦ . (7)

1 Only pixels x ∈ P at suitable distance to the border of P such that the derivatives
can be computed for all x′ ∈ Uω(x) are considered.
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shall be termed the data matrix and data vector, respectively of the LPL model.
The LBCCE (6) is then equivalent to

∀x ∈ P : Ag(x)p(x) = bg(x) . (8)

3 Parameter Estimation

We assume gray values to be corrupted by additive noise. The additive EIV
model claims the existence of a true signal τ : P → C and, for all x ∈ P , a
random variable ε(x) (noise) such that

∀x ∈ P : g(x) = τ(x) + ε(x) . (9)

Through the use of LSI operators, derivatives are approximated by linear com-
binations of gray values. The overlap of FIR masks in the computation of these
derivatives at nearby pixels introduces correlation to the entries of Ag and bg. As
these entries are linear in the derivatives, they can be decomposed with respect
to (9) into

Ag(x) = Aτ (x) + Aε(x) and bg(x) = bτ (x) + bε(x) . (10)

In the EIV model, it is assumed that Aτ (x)p(x) = bτ (x) holds exactly as op-
posed to (8) which may be violated by the errors. As discussed comprehensively
by Van Huffel [10], total least squares (TLS) would be the unique (with proba-
bility one) maximum likelihood estimator of the parameters p(x) if the entries of
the matrix [Ag(x), bg(x)] stemmed from a multivariate normal distribution with
zero mean and covariance matrix σ21l. If these entries were known to be uncorre-
lated with zero mean and equal variance, TLS would still be a strongly consistent
estimator. But in the present case, mutual correlation is introduced by the over-
lapping FIR masks of derivative operators. The idea in equilibration is to derive
from the covariance matrices of the vectors vec([Ag(x), bg(x)]) (column-wise
vectorization of the matrix [Ag(x), bg(x)]) square equilibration matrices WL(x)
and WR(x) to estimate p̂(x) by TLS on the data WL(x)[Ag(x), bg(x)]WT

R (x)
instead of [Ag(x), bg(x)]. WT

R (x)p̂(x) is then taken as an estimate of the ini-
tial problem. Mühlich [11] derives properties of equilibration matrices from the
perturbation theory of eigenvectors and presents an algorithm to compute these
iteratively from the covariance matrices of the vectors vec([Ag(x), bg(x)]). If the
aperture function ω : P × P → IR+

0 depends, for all x, x′ ∈ P , only on the
difference x′ − x, there exist an m ∈ IN such that ∀x ∈ P : |Uω(x)| = m as well
as a common covariance matrix C ∈ IRm×(k+1) (k being the number of model
parameters) such that

∀x ∈ P : cov(vec([Ag(x), bg(x)])) = cov(vec([Aε(x), bε(x)])) = C . (11)

The equilibration matrices WL ∈ IRm×m and WR ∈ IR(k+1)×(k+1) are in this
case independent of x. Equilibration in the context of motion model selection is
discussed in detail in [12]. The effect of equilibration is illustrated in Figure 1.
It can be seen that the unequilibrated data is highly correlated as well as that
some correlation remains after equilibration.
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Fig. 1. LC (k = 2) local optical flow estimation from identical cuboidal 3×3×3 motion
neighborhoods (m = 27) is considered. Left: Identical covariance matrix C ∈ IR81×81 of
the vectors vec([Ag(x), bg(x)]), with structure owing to FIR masks. Middle: Covariance
matrix of vec(WL[Ag(x), bg(x)]W T

R ). Right: Unity matrix.

4 Residual Analysis

If the distribution of noise in the gray values is known, we propose to test regres-
sion residuals to be in accordance with the theoretically expected distribution.
Given ETLS estimates p̂ : P → IRk, the residuals are given by the mapping
r̂ : P → IRm such that

∀x ∈ P : r̂(x) := WL[Ag(x), bg(x)]WT
R

(
p̂(x)
−1

)
. (12)

In principle, the theoretical PDF of these residuals is determined by the joint
PDF of the entries of Ag(x) and bg(x). The latter is obtained from the EIV
model, the motion models, and the derivative operators. However, there is a
direct influence to the residual PDF by the factor [Ag(x), bg(x)] as well as an
indirect influence by the PDF of the estimates p̂(x). In the following, we assume
p̂ to be deterministic. Then, the residuals (12), expressed as

∀x ∈ P : r̂(x) =

((
p̂(x)
−1

)T

WR ⊗ WL

)

︸ ︷︷ ︸
=: R(x)

vec([Ag(x), bg(x)]) , (13)

are obtained from the deterministic linear mapping defined by the matrix R(x),
applied to the vector vec([Ag(x), bg(x)]) of which the covariance matrix (11) is
known. The covariance matrices of the residual vectors are therefore given by
Cr : P → IRm×m such that ∀x ∈ P : Cr(x) := cov(r̂(x)) = R(x)CRT (x). From
the Cholesky factorizations L : P → IRm×m such that LLT = Cr follows that
ŝ := L−1r̂ is decorrelated i.e.,

∀x ∈ P : cov(ŝ(x)) = 1lm , (14)
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while ∀x ∈ P : E(ŝ(x)) = L−1(x)R(x)E(vec([Ag(x), bg(x)])). From (10) follows
E(vec([Ag(x), bg(x)])) = vec([Aτ (x), bτ (x)])+E(vec([Aε(x), bε(x)])). Under the
assumption that the entries of [Aε(x), bε(x)] have zero mean, it follows

∀x ∈ P : E(ŝ(x)) = L−1(x)WL[Aτ (x), bτ (x)]WT
R

(
p̂(x)
−1

)
. (15)

In practice, it depends on the appropriateness of the parametric model as well
as on the empirical distribution of noise whether or not

[Aτ (x), bτ (x)]WT
R

(
p̂(x)
−1

)
= 0 (16)

holds, in which case it follows from (15) that

E(ŝ(x)) = 0. (17)

If, in addition, the noise in the gray values is i.i.d. according to a normal distri-
bution with known variance then, it follows from (14) and (17) that the entries
of the decorrelated residual vector ŝ(x) from ETLS estimation form a set of
independent standard normally distributed random variables. We therefore sug-
gest to adaptively test this set of residuals, for each pixel x ∈ P , to be standard
normally distributed. Deviations from the standard normal distribution are then
taken as indications of inappropriateness of the motion model. We have therefor
employed the Kolmogorov-Smirnov test, Pearson’s χ2 test, the Anderson-Darling
test as well as the absolute difference of the vectors of the first 2,3,4 and 5 non-
centered moments of the empirical and theoretical distribution.

5 Application and Results

In order to allow for motion estimation on real world video data or standard
benchmark sequences such as the Yosemite sequence, the model selector has to
be incorporated into a motion estimation framework that is capable of handling
the aperture problem. If the model selector was examined separately on real data,
the aperture problem as well as a possible incoherence of the true displacement
and optical flow due to changes in illumination would distract from properties of
the model selection process. Benchmark results from motion estimation frame-
works on the other hand include effects from all components, be it confidence
measures, motion segmentation or noise estimation techniques. Hence, in order
to specifically test for properties of the model selector, we generated a variety of
sequences from given two-dimensional displacement fields by warping of an ini-
tial frame. Gray value structure on multiple scales was introduced to this frame
in order to avoid the aperture problem. Zero mean Gaussian noise was added
to the sequences. In this special case, no framework is needed. A systematic
study of the discrepancy between the true displacement field and optical flow
estimates on this data can be trusted to indicate precisely the properties of the
model selection process. Results from model selection are shown in Figure 2 for
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Fig. 2. Model selection from 11x11x3 motion neighborhoods of simulated sequences
at 0.5% noise-to-signal amplitude ratio by comparison of 5 moments of the residual
distribution. a) displacement field of the types sequence, b) according model selection,
c) displacement field of the current sequence, d) according model selection.

a sequence featuring motion patterns of different parametric form (top) as well
as for a simulated continuous current (bottom). From the different shading in
Figure 2b, it can be seen that model selection is in accordance with the true dis-
placement field. Motion patterns are identified correctly. The incidental choice
of overly complex models is explained by the fact that a higher order model with
the additional parameters correctly estimated as zero cannot be distinguished
from the simpler model by means of residual analysis. The most complex model
is correctly selected at motion discontinuities. Apart from the identification of
motion patterns, an important application of model selection is to limit model
complexity with respect to noise. While a complex model is appropriate at low
noise levels model complexity has to be controlled with increasing noise in or-
der to avoid over-fitting. Figure 3 shows the effect of model selection on the
mean deviation of optical flow estimates from the true displacement field at
0.5%, 3% and 10% noise added to the continuous current sequence. The means
were taken over the entire sequence. Amplitude and direction of the deviation
were calculated together with the well-known angular error. Global choices of a
single model (left part of each bar graph) are compared to adaptive model selec-
tion per pixel. In the latter case, errors from different (the selected) models are
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Fig. 3. Mean errors of optical flow estimation from 9x9x3 motion neighborhoods of
a simulated continuous 2D current at different noise levels (top to bottom). Results
for the models LC (C), LSS (S), LRD (R), LAF (A) and LPL (P), as well as for the
adaptively selected models chosen by the KS test (k), the χ2 test (x), the AD test
(a) and the absolute difference of the vectors of the first 2,3,4 and 5 moments of the
empirical and the theoretical distribution.

cumulated in the mean. Regardless which of the models LC (C), LSS (S), LRD
(R), LAF (A) and LPL (P) is chosen globally, a situation exists in which the er-
ror is intolerably high compared to another model. This effect from global model
assumptions causes a problem in applications with complex motion patterns and
changing noise where a complex model, although needed to yield good estimates
at low noise, performs weak at increasing noise levels. Considering model selec-
tion by Pearson’s χ2 test (x) or the Anderson-Darling test (a) which are the
best performing model selectors, it can be seen from the top row of figure 3
that these adaptive estimators yield errors comparable to those obtained from
the best global choices. The reason is that the residual-based model selector
precisely excludes inappropriate models. At 3% and 10% noise, global model
choices exist which are favorable to adaptive model selection. Nevertheless, the
discrepancy is tolerable if the aim is to exclude the most complex models which
perform poorly in this case. Results in model complexity control hence prove to
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be useful for applications where noise as well as the complexity of the displace-
ment field vary. The slight limitation in model complexity control at high noise
is due to the idealization of parameter estimates to be deterministic. However,
this is not a principle drawback of residual analysis in motion model selection
and effects are tolerable.

6 Conclusion and Perspectives

We have demonstrated that statistical testing of regression residuals is a viable
approach to the model selection problem in motion estimation. The residual-
based model selector is capable of precisely excluding inappropriate models. Its
performance in model complexity control makes this model selector a particu-
larly useful tool for applications where noise as well as the complexity of the
displacement field vary. Slight limitations of the proposed method with tolerable
effects are due to the idealization of equilibrated total least squares estimates
to be deterministic. The incorporation of approximations to the distribution of
TLS estimates is a promising starting point for future research.
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11. Mühlich, M.: Estimation in Projective Spaces and Application in Computer Vision.
PhD thesis, Johann Wolfgang Goethe Universität Frankfurt am Main (2005)

12. Andres, B.: Model selection in optical flow-based motion estimation by means of
residual analysis. Diploma thesis, University of Heidelberg (2007)


	Selection of Local Optical Flow Models by Means of Residual Analysis
	Introduction and Related Work
	Local Optical Flow
	Parameter Estimation
	Residual Analysis
	Application and Results
	Conclusion and Perspectives


