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I For any A, 2A denotes the power set of A.

I For any A and any k ∈ N0,
(
A
k

)
denotes the set of all subsets of A

with precisely k elements.

I For any A and any B ⊆ A, let Bc := A−B denote the
complement of B in A.

I For any A, B and (a, b) ∈ A×B, let ab := (a, b), i.e. short-hand for
an ordered pair.

I For any n ∈ N, let [n] := {m ∈ N|m ≤ n}.
I For any A and any B, let BA denote the set of all maps from A to

B, i.e., the set of all f ∈ 2A×B such that

∀a ∈ A ∃b ∈ B ab ∈ f

∀a ∈ A ∀b, b′ ∈ B (ab ∈ f ∧ ab′ ∈ f)⇒ (b = b′) .

I We may write f : A→ B instead of f ∈ BA.
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Definition 1

For any n ∈ N, any f : {0, 1}n → R is called an n-variate
Pseudo-Boolean function (PBF).



Definition 2

For any n ∈ N, any d ∈ {0, . . . , n}, let

Knd :=

(
[n]

d

)
Jnd :=

d⋃
m=0

Knm Cnd := RJnd (1)

and call any c ∈ Cnd an n-variate multi-linear polynomial form of
degree at most d.

Example. For n = d = 2, we have

J22 =

2⋃
m=0

(
[2]

m

)
=

(
{1, 2}
0

)
∪
(
{1, 2}
1

)
∪
(
{1, 2}
2

)
= {∅} ∪ {{1}, {2}} ∪ {{1, 2}}
= {∅, {1}, {2}, {1, 2}}
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Definition 3

For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ Cnd, fc : {0, 1}n → R
such that

∀x ∈ {0, 1}n fc(x) :=

d∑
m=0

∑
J∈([n]

m)

cJ
∏
j∈J

xj (2)

is called the PBF defined by c.

Example. For any c ∈ C22, fc : {0, 1}2 → R is such that

∀x ∈ {0, 1}2 fc(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .
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Lemma 1

Every PBF has a unique multi-linear polynomial form. More precisely,

∀n ∈ N ∀f : {0, 1}n → R ∃1c ∈ Cnn f = fc . (3)

Example. For n = d = 2 and any f : {0, 1}2 → R, the existence of a
c ∈ C22 such that f = fc means

∀x ∈ {0, 1}2 f(x1, x2) = c∅ + c{1}x1 + c{2}x2 + c{1,2}x1x2 .

Explicitly,

f(0, 0) = c∅

f(1, 0) = c∅ + c{1}

f(0, 1) = c∅ + c{2}

f(1, 1) = c∅ + c{1} + c{2} + c{1,2} .

In this example, a suitable c exists and is defined uniquely by f .
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Proof.

I For any J ⊆ [n], let xJ ∈ {0, 1}n such that

∀j ∈ [n] xJ
j =

{
1 if j ∈ J

0 otherwise
.

I Now,

∀x ∈ {0, 1}n f(x) =
∑

J∈2[n]

cJ
∏
j∈J

xj

is written equivalently as

f(x∅) = c∅

∀J 6= ∅ f(xJ) = cJ +
∑
J′⊂J

cJ′ .

I Thus, c is defined uniquely (by induction over the cardinality of J).
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Definition 4

For any n ∈ N and any d ∈ {0, . . . , n}, let

Fnd := {f : {0, 1}n → R | ∃c ∈ Cnd : f = fc} (4)

and call any f ∈ Fnd an n-variate PBF of degree at most d.

In addition, call any f ∈ Fn2 a quadratic PBF (QPBF).

Note. For any n ∈ N, Fnn is the set of all n-variate PBFs (by Lemma 1).
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I Pseudo-Boolean Optimization (PBO): Given n ∈ N and
f : {0, 1}n → R,

min
x∈{0,1}n

f(x) . (5)

I Quadratic Pseudo-Boolean Optimization (QPBO): Given n ∈ N
and f ∈ Fn2,

min
x∈{0,1}n

f(x) . (6)

I Is QPBO less complex than PBO?



Definition 5

For any n ∈ N and any c ∈ Cnn, define the size of c as

size(c) :=
∑

J⊆[n]:cJ 6=0

|J | . (7)



Lemma 2

For any x, y, z ∈ {0, 1}:

z = xy ⇔ xy − 2xz − 2yz + 3z = 0 , (8)

z 6= xy ⇔ xy − 2xz − 2yz + 3z > 0 . (9)

Proof. By verifying equivalence for all eight cases.



Algorithm 1 (Boros and Hammer 2001)

Input: c ∈ Cnn

Output: c′ ∈ Cn2

M := 1 + 2
∑

J⊆[n] |cJ |
m := n
cm := c
while there exists a J ⊆ [n] such that |J | > 2 and cmJ 6= 0

Choose j, k ∈ J such that j 6= k
cm+1 := cm

cm+1
{j,k} := cm+1

{j,k} +M

cm+1
{j,m+1} := −2M
cm+1
{k,m+1} := −2M
cm+1
{m+1} := 3M

for all {j, k} ⊆ J ′ ⊆ [n] such that cm+1
J′ 6= 0

cm+1
J′−{j,k}∪{m+1} := cm+1

J′

cm+1
J′ := 0

m := m+ 1
c′ := cm



Theorem 1

I Algorithm 1 terminates in polynomial time in size(c).

I size(c′) is polynomially bounded by size(c).

I The multi-linear quadratic form c′ is such that ∀x̂ ∈ Rn:

x̂ ∈ argmin
x∈{0,1}n

fc(x)

⇒ ∃x̂′ ∈ {0, 1}m
(
x̂′[n] = x̂[n] ∧ x̂′ ∈ argmin

x′∈{0,1}m
fc′(x

′)

)
. (10)



Proof.
I The algorithm replaces the occurrence of xjxk by xm+1 and adds

the form M(xjxk − 2xjxm+1 − 2xkxm+1 + 3xm+1).
I If xm+1 = xjxk,

fm+1(x1, . . . , xm+1) = fm(x1, . . . , xn) ≤ max
x′∈{0,1}n

fm(x′) < M/2 .

I If xm+1 6= xjxk,

fm+1(x1, . . . , xm+1) ≥M/2

(by Lemma 2 and by definition of M).

I For every iteration m,

|{J ⊆ [n]||J | > 2 ∧ cm+1
J 6= 0}| < |{J ⊆ [n]||J | > 2 ∧ cmJ 6= 0}|

which proves the complexity claims.
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Summary

I Every PBF has a unique multi-linear polynomial form.

I PBO is polynomially reducible to QPBO.



Definition 6

For any n ∈ N and any d ∈ {0, . . . , n}, let

K+
nm := {(K1,K0)|K1,K0 ⊆ [n] ∧K1 ∩K0 = ∅ ∧ |K1|+ |K0| = m}

J+
nm :=

d⋃
m=0

K+
nm

C+
nm := {c : J+

nm → R | ∀j ∈ J+
nm − {(∅, ∅)} : 0 ≤ cj}

and call any c ∈ C+
nm an n-variate posiform of degree at most d.

Example. For n = d = 2,

J+
22 = { (∅, ∅) }

∪ { ({1}, ∅), (∅, {1}), ({2}, ∅), (∅, {2}) }
∪ { ({1, 2}, ∅), ({1}, {2}), ({2}, {1}), (∅, {1, 2}) }
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Definition 7

For any n ∈ N, any d ∈ {0, . . . , n} and any c ∈ C+
nd, fc : {0, 1}n → R

such that

∀x ∈ {0, 1}n fc(x) :=
∑

(J1,J0)∈J+
nd

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′j) (11)

is called the PBF defined by c.

Example. For any c ∈ C+
22, fc : {0, 1}2 → R is such that ∀x ∈ {0, 1}2

f(x) = c∅∅

+ c{1}∅x1 + c∅{1}(1− x1) + c{2}∅x2 + c∅{2}(1− x2)

+ c{1,2}∅x1x2 + c{1}{2}x1(1− x2) + c{2}{1}(1− x1)x2

+ c∅{1,2}(1− x1)(1− x2) .
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Definition 8

For any n ∈ N and any f : {0, 1}n → R, the posiform defined by

∀x ∈ {0, 1}n K1
x := {j ∈ [n]|xj = 1}

K0
x := {j ∈ [n]|xj = 0}

and

J := {(∅, ∅)} ∪
⋃

x∈{0,1}n
{(K1

x,K
0
x)}

and c : J → R such that

c∅∅ := min
x∈{0,1}n

f(x)

∀x ∈ {0, 1}n cK1
xK

0
x
:= f(x)− c∅∅

is called min-term posiform of f .



Lemma 3

For any n ∈ N and any f : {0, 1}n → R, the min-term posiform c of f
holds fc = f .

Corollary 1

For any n ∈ N and any f : {0, 1}n → R, there exists a posiform c ∈ C+
nn

such that fc = f .



Lemma 3

For any n ∈ N and any f : {0, 1}n → R, the min-term posiform c of f
holds fc = f .

Corollary 1

For any n ∈ N and any f : {0, 1}n → R, there exists a posiform c ∈ C+
nn

such that fc = f .



Proof of Lemma 3.

I Let n ∈ N and f : {0, 1}n → R. Moreover, let c : J → R the
min-term posiform of f .

I c is a posiform (by definition).

I Let g : {0, 1}n → R be the PBF defined by this posiform.

I Then, for any x ∈ {0, 1}n,

(J1, J0) ∈ {(∅, ∅), (K1
x,K

0
x)} ⊆ J

are the only elements of J for which

0 6=
∏
j∈J1

xj

∏
j′∈J0

(1− x′j) = 1 .

I Thus,

∀x ∈ {0, 1}n g(x) = c∅∅ + cK1
xK

0
x

= c∅∅ + f(x)− c∅∅ (by definition of c)

= f(x) .
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x,K

0
x)} ⊆ J

are the only elements of J for which

0 6=
∏
j∈J1

xj

∏
j′∈J0

(1− x′j) = 1 .

I Thus,

∀x ∈ {0, 1}n g(x) = c∅∅ + cK1
xK

0
x

= c∅∅ + f(x)− c∅∅ (by definition of c)

= f(x) .
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Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not
be unique, e.g., x1 = x1x2 + x1(1− x2).

Definition 9

For any n ∈ N, any f : {0, 1}n → R and any d ∈ {0, . . . , n}, let

C+
nd(f) :=

{
c ∈ C+

nd | fc = f
}

. (12)

Note. For any n ∈ N and any f : {0, 1}n → R, C+
nn(f) contains at least

the min-term posiform of f .
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Lemma 4

∀n ∈ N ∀f : {0, 1}n → R ∀c ∈ C+
nn(f) ∀x ∈ {0, 1}n c∅∅ ≤ f(x) .



Proof.

I By definition, we have, for all x ∈ {0, 1}n,

f(x) =

d∑
m=0

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′j)

= c∅∅ +

d∑
m=1

∑
(K1,K0)∈K+

nm

cK1K0

∏
j∈K1

xj

∏
j′∈K0

(1− x′j) ,

and all coefficients cK1K0 in the second sum are non-negative.

I Therefore, the second sum is non-negative.

I Thus,

∀x ∈ {0, 1}n f(x) ≥ c∅∅ .
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Definition 10

For any posiform c : J → R, a pair (S, y) such that S ⊆ [n] and
y : S → {0, 1} is called a contractor of c iff

∀(J1, J0) ∈ J (J1 ∩ S = ∅ ∧ J0 ∩ S = ∅)
∨ (∃j ∈ J1 ∩ S yj = 0)

∨ (∃j ∈ J0 ∩ S yj = 1) . (13)



Lemma 5

For any n ∈ N, any f : {0, 1}n → R, any posiform c ∈ C+
nn(f), any

contractor (S, y) of c and tS,y : {0, 1}n → {0, 1}n such that

∀x ∈ {0, 1}n ∀j ∈ [n] (tS,y(x))j =

{
yj if j ∈ S

xj otherwise
(14)

holds

∀x ∈ {0, 1}n f(tS,y(x)) ≤ f(x) . (15)

Corollary 2 (weak persistency)

x̂ ∈ argmin
x∈{0,1}n

f(x) ⇒ tS,y(x̂) ∈ argmin
x∈{0,1}n

f(x) (16)
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Proof of Lemma 5.

I Let J S̄ := {(J1, J0) ∈ J+
nn | J1 ∩ S = J0 ∩ S = ∅} and

JS := J − J S̄ .

I By definition,

∀x ∈ {0, 1}n f(x) =
∑

(J1,J0)∈JS

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′j)︸ ︷︷ ︸
=:fS(x)

+
∑

(J1,J0)∈J S̄

cJ1J0

∏
j∈J1

xj

∏
j′∈J0

(1− x′j)︸ ︷︷ ︸
=:f S̄(x)

.

I Furthermore,

∀x ∈ {0, 1}n fS(tS,y(x)) = 0 (by definition)

0 ≤ fS(x) (because (∅, ∅) 6∈ JS)

f S̄(tS,y(x)) = f S̄(x) (by definition)
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Summary

I Every PBF has a posiform

I The posiform of a PBF need not be unique

I For every PBF f and every posiform c of f
I c∅∅ is a lower bound on the minimum of f
I weak persistency holds at any contractor of c


