Discrete Optimization for Image Analysis

Bjoern Andres

University of Tübingen

Pseudo-Boolean Optimization I/II

Outline

- ▶ Literature
- ▶ Notation
- ► Pseudo-Boolean functions
- ► Multi-linear polynomial forms
 - ► Existence and uniqueness
 - ► Reduction of PBO to QPBO
- ▶ Posiforms
 - ► Existence
 - ▶ Bounds
 - ► Weak persistency
 - ► Complementation and the Floor Dual Bound

This lecture is based on the publications

- ► E. Boros, P. L. Hammer, X. Sun: Network flows and minimization of quadratic pseudo-Boolean functions. RUTCOR Research Report 17-1991
- quadratic pseudo-Boolean functions. RUTCOR Research Report 17-1991
 ▶ E. Boros, P. L. Hammer: Pseudo-Boolean optimization. Discrete Applied Mathematics 123(1-3): 155-225 (2002)

► E. Boros, P. L. Hammer, R. Sun, G. Tavares: A max-flow approach to improved lower bounds for quadratic unconstrained binary optimization (QUBO). Discrete Optimization 5(2): 501–529 (2008)

- ▶ For any A, 2^A denotes the **power set** of A.
- ▶ For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ▶ For any A and any B, let B^A denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$

$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b') \ .$$

- ▶ For any A, 2^A denotes the **power set** of A.
- For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the complement of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- For any A and any B, let B^A denote the set of all **maps from** A **to** B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$
$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b')$$

- ▶ For any A, 2^A denotes the **power set** of A.
- ▶ For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ▶ For any A and any B, let B^A denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$
$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b')$$

- ▶ For any A, 2^A denotes the **power set** of A.
- ▶ For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ▶ For any A and any B, let B^A denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$
$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b')$$

lacktriangle We may write $f:A\to B$ instead of $f\in B^A$.

- ▶ For any A, 2^A denotes the **power set** of A.
- ► For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ▶ For any A and any B, let B^A denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$
$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b')$$

- ▶ For any A, 2^A denotes the **power set** of A.
- ► For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ► For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ► For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ► For any A and any B, let B^A denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$

$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b') .$$

- ▶ For any A, 2^A denotes the **power set** of A.
- For any A and any $k \in \mathbb{N}_0$, $\binom{A}{k}$ denotes the set of all subsets of A with precisely k elements.
- ▶ For any A and any $B \subseteq A$, let $B^c := A B$ denote the **complement** of B in A.
- ▶ For any A, B and $(a,b) \in A \times B$, let ab := (a,b), i.e. short-hand for an **ordered pair**.
- ▶ For any $n \in \mathbb{N}$, let $[n] := \{m \in \mathbb{N} | m \le n\}$.
- ▶ For any A and any B, let ${\color{red} B^A}$ denote the set of all maps from A to B, i.e., the set of all $f \in 2^{A \times B}$ such that

$$\forall a \in A \ \exists b \in B \quad ab \in f$$
$$\forall a \in A \ \forall b, b' \in B \quad (ab \in f \land ab' \in f) \Rightarrow (b = b') .$$

For any $n \in \mathbb{N}$, any $f : \{0,1\}^n \to \mathbb{R}$ is called an n-variate Pseudo-Boolean function (PBF).

For any $n \in \mathbb{N}$, any $d \in \{0, \dots, n\}$, let

$$K_{nd} := \begin{pmatrix} [n] \\ d \end{pmatrix} \qquad J_{nd} := \bigcup_{m=0}^{d} K_{nm} \qquad C_{nd} := \mathbb{R}^{J_{nd}} \tag{1}$$

and call any $c \in C_{nd}$ an n-variate multi-linear polynomial form of degree at most d.

Example. For n = d = 2, we have

$$J_{22} = \bigcup_{m=0}^{2} {2 \choose m}$$

$$= {1,2} \choose 0} \cup {1,2} \choose 1} \cup {1,2} \choose 2}$$

$$= {\emptyset} \cup {\{1\}, \{2\}\}} \cup {\{1,2\}\}}$$

$$= {\emptyset, \{1\}, \{2\}, \{1,2\}\}}$$

For any $n \in \mathbb{N}$, any $d \in \{0, \dots, n\}$, let

$$K_{nd}:=egin{pmatrix} [n]\d\end{pmatrix} \qquad J_{nd}:=igcup_{m=0}^d K_{nm} \qquad C_{nd}:=\mathbb{R}^{J_{nd}}$$

and call any $c \in C_{nd}$ an n-variate multi-linear polynomial form of degree at most d.

Example. For n = d = 2, we have

$$\begin{split} J_{22} &= \bigcup_{m=0}^{2} \binom{[2]}{m} \\ &= \binom{\{1,2\}}{0} \cup \binom{\{1,2\}}{1} \cup \binom{\{1,2\}}{2} \\ &= \{\emptyset\} \cup \{\{1\},\{2\}\} \cup \{\{1,2\}\} \\ &= \{\emptyset,\{1\},\{2\},\{1,2\}\} \end{split}$$

For any $n \in \mathbb{N}$, any $d \in \{0, \dots, n\}$ and any $c \in C_{nd}$, $f_c : \{0, 1\}^n \to \mathbb{R}$ such that

$$\forall x \in \{0,1\}^n \qquad f_c(x) := \sum_{m=0}^d \sum_{J \in \binom{[n]}{m}} c_J \prod_{j \in J} x_j \tag{2}$$

is called the **PBF** defined by c.

Example. For any $c \in C_{22}$, $f_c: \{0,1\}^2 o \mathbb{R}$ is such tha

$$\forall x \in \{0,1\}^2$$
 $f_c(x_1,x_2) = c_0 + c_{11}x_1 + c_{12}x_2 + c_{11}x_1x_2$

For any $n \in \mathbb{N}$, any $d \in \{0, \dots, n\}$ and any $c \in C_{nd}$, $f_c : \{0, 1\}^n \to \mathbb{R}$

such that

is called the **PBF** defined by c.

 $\forall x \in \{0,1\}^n \qquad f_c(x) := \sum^d \sum_{i=1}^d c_i \prod_{j=1}^d x_j$

 $\forall x \in \{0,1\}^2 \quad f_c(x_1, x_2) = c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2 .$

Example. For any $c \in C_{22}$, $f_c : \{0,1\}^2 \to \mathbb{R}$ is such that

m=0 $J \in \binom{[n]}{n}$ $j \in J$

(2)

Lemma 1

Every PBF has a unique multi-linear polynomial form. More precisely,

$$\forall n \in \mathbb{N} \quad \forall f : \{0,1\}^n \to \mathbb{R} \quad \exists_1 c \in C_{nn} \quad f = f_c \quad .$$
 (3)

Example. For n=d=2 and any $f:\{0,1\}^2\to\mathbb{R}$, the existence of a $c\in C_{22}$ such that $f=f_c$ means

$$\forall x \in \{0,1\}^2 \quad f(x_1, x_2) = c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2 .$$

Explicitly,

$$f(0,0) = c_{\emptyset}$$

$$f(1,0) = c_{\emptyset} + c_{\{1\}}$$

$$f(0,1) = c_{\emptyset} + c_{\{2\}}$$

$$f(1,1) = c_{\emptyset} + c_{\{1\}} + c_{\{2\}} + c_{\{1,2\}}.$$

In this example, a suitable c exists and is defined uniquely by f .

Lemma 1

Every PBF has a unique multi-linear polynomial form. More precisely,

$$\forall n \in \mathbb{N} \quad \forall f : \{0,1\}^n \to \mathbb{R} \quad \exists_1 c \in C_{nn} \quad f = f_c \quad .$$
 (3)

Example. For n=d=2 and any $f:\{0,1\}^2\to\mathbb{R}$, the existence of a $c\in C_{22}$ such that $f=f_c$ means

$$\forall x \in \{0,1\}^2 \quad f(x_1, x_2) = c_{\emptyset} + c_{\{1\}}x_1 + c_{\{2\}}x_2 + c_{\{1,2\}}x_1x_2 .$$

Explicitly,

$$f(0,0) = c_{\emptyset}$$

$$f(1,0) = c_{\emptyset} + c_{\{1\}}$$

$$f(0,1) = c_{\emptyset} + c_{\{2\}}$$

$$f(1,1) = c_{\emptyset} + c_{\{1\}} + c_{\{2\}} + c_{\{1,2\}}.$$

In this example, a suitable c exists and is defined uniquely by f.

▶ For any $J \subseteq [n]$, let $x^J \in \{0,1\}^n$ such that

$$\forall j \in [n] \quad x_j^J = \begin{cases} 1 & \text{if } j \in J \\ 0 & \text{otherwise} \end{cases}.$$

Now,

$$\forall x \in \{0,1\}^n$$
 $f(x) = \sum_{J \in 2^{[n]}} c_J \prod_{j \in J} x_j$

is written equivalently as

$$f(x^{\emptyset}) = c_{\emptyset}$$

$$\forall J \neq \emptyset \quad f(x^{J}) = c_{J} + \sum_{J' \in J} c_{J'}$$

 \blacktriangleright Thus, c is defined uniquely (by induction over the cardinality of J).

▶ For any $J \subseteq [n]$, let $x^J \in \{0,1\}^n$ such that

$$\forall j \in [n] \quad x_j^J = \begin{cases} 1 & \text{if } j \in J \\ 0 & \text{otherwise} \end{cases}.$$

► Now,

$$\forall x \in \{0,1\}^n$$
 $f(x) = \sum_{J \in 2^{[n]}} c_J \prod_{j \in J} x_j$

is written equivalently as

$$f(x^{\emptyset}) = c_{\emptyset}$$

$$\forall J \neq \emptyset \quad f(x^{J}) = c_{J} + \sum_{I' \subset J} c_{J'}.$$

 \blacktriangleright Thus, c is defined uniquely (by induction over the cardinality of J).

▶ For any $J \subseteq [n]$, let $x^J \in \{0,1\}^n$ such that

$$\forall j \in [n] \quad x_j^J = \begin{cases} 1 & \text{if } j \in J \\ 0 & \text{otherwise} \end{cases}.$$

► Now,

$$\forall x \in \{0,1\}^n$$
 $f(x) = \sum_{J \in 2^{[n]}} c_J \prod_{j \in J} x_j$

is written equivalently as

$$f(x^{\emptyset}) = c_{\emptyset}$$

$$\forall J \neq \emptyset \quad f(x^{J}) = c_{J} + \sum_{I' \in J} c_{J'}.$$

▶ Thus, c is defined uniquely (by induction over the cardinality of J).

For any
$$n \in \mathbb{N}$$
 and any $d \in \{0, \dots, n\}$, let

and call any $f \in F_{nd}$ an n-variate PBF of degree at most d.

 $F_{nd} := \{ f : \{0,1\}^n \to \mathbb{R} \mid \exists c \in C_{nd} : f = f_c \}$

(4)

For any
$$n\in\mathbb{N}$$
 and any $d\in\{0,\ldots,n\}$, let
$$F_{nd}:=\{\,f:\{0,1\}^n\to\mathbb{R}\mid\exists c\in C_{nd}:\ f=f_c\}$$

and call any $f \in F_{nd}$ an n-variate PBF of degree at most d.

In addition, call any $f \in F_{n2}$ a quadratic PBF (QPBF).

(4)

 $F_{nd} := \{ f : \{0,1\}^n \to \mathbb{R} \mid \exists c \in C_{nd} : f = f_c \}$

and call any $f \in F_{nd}$ an n-variate PBF of degree at most d. In addition, call any $f \in F_{n2}$ a quadratic PBF (QPBF).

Note. For any $n \in \mathbb{N}$, F_{nn} is the set of all n-variate PBFs (by Lemma 1).

For any $n \in \mathbb{N}$ and any $d \in \{0, \dots, n\}$, let

(4)

▶ Pseudo-Boolean Optimization (PBO): Given $n \in \mathbb{N}$ and $f: \{0,1\}^n \to \mathbb{R}$,

$$\min_{x \in \{0,1\}^n} f(x) \ . \tag{5}$$

▶ Quadratic Pseudo-Boolean Optimization (QPBO): Given $n \in \mathbb{N}$ and $f \in F_{n2}$.

$$\min_{x \in \{0,1\}^n} f(x) .$$
(6)

► Is QPBO less complex than PBO?

For any $n \in \mathbb{N}$ and any $c \in C_{nn}$, define the **size** of c as

 $\operatorname{size}(c) := \sum_{J \subseteq [n]: c_J \neq 0} |J| \ .$

(7)

Lemma 2

For any
$$x, y, z \in \{0, 1\}$$
:

Proof. By verifying equivalence for all eight cases.

$$x_i$$

$$xy$$
 –

$$xy$$
 —

$$z \neq xy \quad \Leftrightarrow \quad xy - 2xz - 2yz + 3z > 0 \ .$$

$$z = xy \quad \Leftrightarrow \quad xy - 2xz - 2yz + 3z = 0 ,$$

Algorithm 1 (Boros and Hammer 2001)

```
Input: c \in C_{nn}
Output: c' \in C_{n2}
M := 1 + 2 \sum_{J \subset [n]} |c_J|
m := n
c^m := c
while there exists a J \subseteq [n] such that |J| > 2 and c_I^m \neq 0
         Choose j, k \in J such that j \neq k
         c^{m+1} := c^m
        \begin{array}{l} c^{m+1}_{\{j,k\}} := c^{m+1}_{\{j,k\}} + M \\ c^{m+1}_{\{j,m+1\}} := -2M \\ c^{m+1}_{\{k,m+1\}} := -2M \\ c^{m+1}_{\{m+1\}} := 3M \end{array}
         for all \{j,k\} \subseteq J' \subseteq [n] such that c_{J'}^{m+1} \neq 0
                  c_{J'-\{j,k\}\cup\{m+1\}}^{m+1} := c_{J'}^{m+1}

c_{J'}^{m+1} := 0
         m := m + 1
c' := c^m
```

Theorem 1

- \blacktriangleright Algorithm 1 terminates in polynomial time in size(c).

▶
$$\operatorname{size}(c')$$
 is polynomially bounded by $\operatorname{size}(c)$.

- ▶ The multi-linear quadratic form c' is such that $\forall \hat{x} \in \mathbb{R}^n$:

 - - $\hat{x} \in \operatorname{argmin} f_c(x)$
 - - $x \in \{0,1\}^n$

 $\Rightarrow \exists \hat{x}' \in \{0,1\}^m \left(\hat{x}'_{[n]} = \hat{x}_{[n]} \land \hat{x}' \in \underset{x' \in \{0,1\}^m}{\operatorname{argmin}} f_{c'}(x') \right) . \quad (10)$

- ► The algorithm replaces the occurrence of $x_j x_k$ by x_{m+1} and adds the form $M(x_j x_k 2x_j x_{m+1} 2x_k x_{m+1} + 3x_{m+1})$.
 - $\blacktriangleright \text{ If } x_{m+1} = x_j x_k,$

$$f^{m+1}(x_1, \dots, x_{m+1}) = f^m(x_1, \dots, x_n) \le \max_{x' \in \{0,1\}^n} f^m(x') < M/2$$

 $\qquad \qquad \blacksquare \text{ If } x_{m+1} \neq x_j x_k,$

$$f^{m+1}(x_1,\ldots,x_{m+1}) \ge M/2$$

(by Lemma 2 and by definition of M).

 \blacktriangleright For every iteration m,

$$|\{J \subseteq [n]||J| > 2 \wedge c_J^{m+1} \neq 0\}| < |\{J \subseteq [n]||J| > 2 \wedge c_J^m \neq 0\}|$$

which proves the complexity claims.

- ► The algorithm replaces the occurrence of $x_j x_k$ by x_{m+1} and adds the form $M(x_j x_k 2x_j x_{m+1} 2x_k x_{m+1} + 3x_{m+1})$.
 - $\blacksquare \text{ If } x_{m+1} = x_j x_k,$

$$f^{m+1}(x_1, \dots, x_{m+1}) = f^m(x_1, \dots, x_n) \le \max_{x' \in \{0,1\}^n} f^m(x') < M/2$$
.

▶ If $x_{m+1} \neq x_j x_k$,

$$f^{m+1}(x_1,\ldots,x_{m+1}) \ge M/2$$

(by Lemma 2 and by definition of M).

 \blacktriangleright For every iteration m,

$$|\{J\subseteq[n]||J|>2\wedge c_J^{m+1}\neq 0\}|<|\{J\subseteq[n]||J|>2\wedge c_J^{m}\neq 0\}|$$
 high proves the complexity claims

- ▶ The algorithm replaces the occurrence of $x_j x_k$ by x_{m+1} and adds the form $M(x_j x_k 2x_j x_{m+1} 2x_k x_{m+1} + 3x_{m+1})$.
 - $\blacktriangleright \text{ If } x_{m+1} = x_j x_k,$

$$f^{m+1}(x_1, \dots, x_{m+1}) = f^m(x_1, \dots, x_n) \le \max_{x' \in \{0,1\}^n} f^m(x') < M/2$$
.

▶ If $x_{m+1} \neq x_i x_k$,

$$f^{m+1}(x_1,\ldots,x_{m+1}) \ge M/2$$

(by Lemma 2 and by definition of M).

 \blacktriangleright For every iteration m,

$$|\{J \subseteq [n]||J| > 2 \wedge c_J^{m+1} \neq 0\}| < |\{J \subseteq [n]||J| > 2 \wedge c_J^m \neq 0\}|$$

which proves the complexity claims.

► PBO is polynomially reducible to QPBO.

For any $n \in \mathbb{N}$ and any $d \in \{0, \dots, n\}$, let

$$K_{nm}^{+} := \{ (K^{1}, K^{0}) | K^{1}, K^{0} \subseteq [n] \land K^{1} \cap K^{0} = \emptyset \land |K^{1}| + |K^{0}| = m \}$$

$$J_{nm}^{+} := \bigcup_{m=0}^{d} K_{nm}^{+}$$

$$C_{nm}^{+} := \{ c : J_{nm}^{+} \to \mathbb{R} \mid \forall j \in J_{nm}^{+} - \{ (\emptyset, \emptyset) \} : 0 \le c_{j} \}$$

and call any $c \in C_{nm}^+$ an n-variate **posiform** of degree at most d.

Example. For n = d = 2,

$$\begin{split} J_{22}^+ = & \{ \ (\emptyset,\emptyset) \ \} \\ & \cup \{ \ (\{1\},\emptyset), \ (\emptyset,\{1\}), \ (\{2\},\emptyset), \ (\emptyset,\{2\}) \ \} \\ & \cup \{ \ (\{1,2\},\emptyset), \ (\{1\},\{2\}), \ (\{2\},\{1\}), \ (\emptyset,\{1,2\}) \end{split}$$

- 2/1

For any
$$n\in\mathbb{N}$$
 and any $d\in\{0,\ldots,n\}$, let
$$K_{nm}^+:=\{(K^1,K^0)|K^1,K^0\subseteq[n]\wedge K^1\cap K^0=\emptyset\wedge |K^1|+|K^0|=m\}$$

$$J_{nm}^{+} := \bigcup_{m=0}^{d} K_{nm}^{+}$$

and call any $c \in C_{nm}^+$ an n-variate **posiform** of degree at most d.

and can any $v \in v_{nm}$ and v variates positions of degree at most v

 $C_{nm}^+ := \{c: J_{nm}^+ \to \mathbb{R} \mid \forall j \in J_{nm}^+ - \{(\emptyset, \emptyset)\}: 0 \le c_j\}$

Example. For
$$n=d=2$$
,
$$J_{22}^+ = \ \, \{ \; (\emptyset,\emptyset) \; \} \\ \cup \, \{ \; (\{1\},\emptyset), \; (\emptyset,\{1\}), \; (\{2\},\emptyset), \; (\emptyset,\{2\}) \; \} \;$$

$$\cup \{ (\{1\},\emptyset), (\emptyset,\{1\}), (\{2\},\emptyset), (\emptyset,\{2\}) \}$$

$$\cup \{ (\{1,2\},\emptyset), (\{1\},\{2\}), (\{2\},\{1\}), (\emptyset,\{1,2\}) \}$$

For any $n \in \mathbb{N}$, any $d \in \{0,\dots,n\}$ and any $c \in C_{nd}^+$, $f_c: \{0,1\}^n \to \mathbb{R}$ such that

$$\forall x \in \{0,1\}^n \qquad f_c(x) := \sum_{(J^1,J^0) \in J_{nd}^+} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j')$$
 (11)

is called the PBF defined by c.

Example. For any $c \in C_{22}^+$, $f_c : \{0,1\}^2 \to \mathbb{R}$ is such that $\forall x \in \{0,1\}^2$

$$f(x) = c_{\emptyset\emptyset}$$

$$+ c_{\{1\}\emptyset}x_1 + c_{\emptyset\{1\}}(1 - x_1) + c_{\{2\}\emptyset}x_2 + c_{\emptyset\{2\}}(1 - x_2)$$

$$+ c_{\{1,2\}\emptyset}x_1x_2 + c_{\{1\}\{2\}}x_1(1 - x_2) + c_{\{2\}\{1\}}(1 - x_1)x_2$$

$$+ c_{\emptyset\{1,2\}}(1 - x_1)(1 - x_2) .$$

For any $n\in\mathbb{N}$, any $d\in\{0,\ldots,n\}$ and any $c\in C_{nd}^+,\ f_c:\{0,1\}^n o\mathbb{R}$

For any
$$n \in \mathbb{N}$$
, any $a \in \{0,\ldots,n\}$ and any $c \in C_{nd}$, $f_c : \{0,1\}^n \to \mathbb{N}$ such that
$$\forall x \in \{0,1\}^n \qquad f_c(x) := \sum_j c_{J^1J^0} \prod_j x_j \prod_j (1-x_j') \qquad (1-x_j')$$

is called the PBF defined by c.

Example. For any $c \in C_{22}^+$, $f_c : \{0,1\}^2 \to \mathbb{R}$ is such that $\forall x \in \{0,1\}^2$

 $(J^1,J^0)\in J^+_{-1}$ $j\in J^1$ $j'\in J^0$

$$f(x) = c_{\emptyset\emptyset}$$

$$+ c_{\{1\}\emptyset}x_1 + c_{\emptyset\{1\}}(1-x_1) + c_{\{2\}\emptyset}x_2 + c_{\emptyset\{2\}}(1-x_2)$$

$$+ c_{\{1,2\}\emptyset}x_1x_2 + c_{\{1\}\{2\}}x_1(1-x_2) + c_{\{2\}\{1\}}(1-x_1)x_2$$

$$+ c_{\emptyset\{1,2\}}(1-x_1)(1-x_2) \ .$$

Definition 8

and

and $c: J \to \mathbb{R}$ such that

is called min-term posiform of f.

 $\forall x \in \{0,1\}^n \quad K_x^1 := \{j \in [n] | x_j = 1\}$

 $J := \{(\emptyset, \emptyset)\} \cup \bigcup \{(K_x^1, K_x^0)\}$ $x \in \{0,1\}^n$

 $\forall x \in \{0,1\}^n \quad c_{K_{-}^1 K_{-}^0} := f(x) - c_{\emptyset\emptyset}$

 $K_r^0 := \{ j \in [n] | x_j = 0 \}$

 $c_{\emptyset\emptyset} := \min_{x \in \{0,1\}^n} f(x)$

Lemma 3

For any $n\in\mathbb{N}$ and any $f:\{0,1\}^n\to\mathbb{R}$, the min-term posiform c of f holds $f_c=f$.

Corollary 1

For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, there exists a posiform $c \in C_r$ such that $f_c = f$.

Lemma 3 For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, the min-term posiform c of f

such that $f_c = f$.

holds $f_c = f$. Corollary 1

For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, there exists a posiform $c \in C_{nn}^+$

- ▶ Let $n \in \mathbb{N}$ and $f : \{0,1\}^n \to \mathbb{R}$. Moreover, let $c : J \to \mathbb{R}$ the min-term posiform of f.
- ightharpoonup c is a posiform (by definition).
- ▶ Let $g: \{0,1\}^n \to \mathbb{R}$ be the PBF defined by this posiform.
- ▶ Then, for any $x \in \{0,1\}^n$,

$$(J^1, J^0) \in \{(\emptyset, \emptyset), (K_x^1, K_x^0)\} \subseteq J$$

are the only elements of J for which

$$0 \neq \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j') = 1 .$$

$$\forall x \in \{0,1\}^n \qquad g(x) = c_{\emptyset\emptyset} + c_{K_x^1 K_x^0}$$

$$= c_{\emptyset\emptyset} + f(x) - c_{\emptyset\emptyset} \quad \text{(by definition of } c_{\emptyset\emptyset}$$

$$= f(x) \ .$$

- ▶ Let $n \in \mathbb{N}$ and $f : \{0,1\}^n \to \mathbb{R}$. Moreover, let $c : J \to \mathbb{R}$ the min-term posiform of f.
- ► *c* is a posiform (by definition).
- ▶ Let $g: \{0,1\}^n \to \mathbb{R}$ be the PBF defined by this posiform.
- ▶ Then, for any $x \in \{0,1\}^n$,

$$(J^1, J^0) \in \{(\emptyset, \emptyset), (K_x^1, K_x^0)\} \subseteq J$$

are the only elements of J for which

$$0 \neq \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j') = 1.$$

$$\begin{aligned} \forall x \in \{0,1\}^n \qquad g(x) &= c_{\emptyset\emptyset} + c_{K_x^1 K_x^0} \\ &= c_{\emptyset\emptyset} + f(x) - c_{\emptyset\emptyset} \quad \text{(by definition of } c \\ &= f(x) \enspace. \end{aligned}$$

- ▶ Let $n \in \mathbb{N}$ and $f : \{0,1\}^n \to \mathbb{R}$. Moreover, let $c : J \to \mathbb{R}$ the min-term posiform of f.
- ► *c* is a posiform (by definition).
- ▶ Let $g: \{0,1\}^n \to \mathbb{R}$ be the PBF defined by this posiform.
- ▶ Then, for any $x \in \{0,1\}^n$,

$$(J^1, J^0) \in \{(\emptyset, \emptyset), (K_x^1, K_x^0)\} \subseteq J$$

are the only elements of J for which

$$0 \neq \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j') = 1.$$

$$\begin{aligned} \forall x \in \{0,1\}^n \qquad g(x) &= c_{\emptyset\emptyset} + c_{K_x^1 K_x^0} \\ &= c_{\emptyset\emptyset} + f(x) - c_{\emptyset\emptyset} \quad \text{(by definition of } c \\ &= f(x) \enspace. \end{aligned}$$

- ▶ Let $n \in \mathbb{N}$ and $f : \{0,1\}^n \to \mathbb{R}$. Moreover, let $c : J \to \mathbb{R}$ the min-term posiform of f.
- ► *c* is a posiform (by definition).
- ▶ Let $g: \{0,1\}^n \to \mathbb{R}$ be the PBF defined by this posiform.
- ▶ Then, for any $x \in \{0,1\}^n$,

$$(J^1,J^0)\in\{(\emptyset,\emptyset),(K^1_x,K^0_x)\}\subseteq J$$

are the only elements of J for which

$$0 \neq \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j') = 1 .$$

$$\begin{aligned} \forall x \in \{0,1\}^n \qquad g(x) &= c_{\emptyset\emptyset} + c_{K_x^1 K_x^0} \\ &= c_{\emptyset\emptyset} + f(x) - c_{\emptyset\emptyset} \quad \text{(by definition of } c \\ &= f(x) \enspace. \end{aligned}$$

- ▶ Let $n \in \mathbb{N}$ and $f : \{0,1\}^n \to \mathbb{R}$. Moreover, let $c : J \to \mathbb{R}$ the min-term posiform of f.
- ightharpoonup c is a posiform (by definition).
- ▶ Let $g: \{0,1\}^n \to \mathbb{R}$ be the PBF defined by this posiform.
- ▶ Then, for any $x \in \{0,1\}^n$,

$$(J^1,J^0)\in\{(\emptyset,\emptyset),(K_x^1,K_x^0)\}\subseteq J$$

are the only elements of J for which

$$0 \neq \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x_j') = 1 .$$

$$\begin{aligned} \forall x \in \{0,1\}^n \qquad g(x) &= c_{\emptyset\emptyset} + c_{K_x^1 K_x^0} \\ &= c_{\emptyset\emptyset} + f(x) - c_{\emptyset\emptyset} \quad \text{(by definition of } c\text{)} \\ &= f(x) \enspace . \end{aligned}$$

Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique, e.g., $x_1 = x_1x_2 + x_1(1 - x_2)$.

Definition 9

For any $n \in \mathbb{N}$, any $f: \{0,1\}^n \to \mathbb{R}$ and any $d \in \{0,\dots,n\}$, let

$$C_{nd}^+(f) := \left\{ c \in C_{nd}^+ \mid f_c = f \right\} .$$
 (12)

Note. For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, $C_{nn}^+(f)$ contains at least the min-term posiform of f.

Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique, e.g., $x_1 = x_1x_2 + x_1(1 - x_2)$.

Definition 9

For any $n \in \mathbb{N}$, any $f: \{0,1\}^n \to \mathbb{R}$ and any $d \in \{0,\ldots,n\}$, let

$$C_{nd}^+(f) := \left\{ c \in C_{nd}^+ \mid f_c = f \right\}$$
 (12)

Note. For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, $C_{nn}^+(f)$ contains at least the min-term posiform of f.

Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not be unique, e.g., $x_1 = x_1x_2 + x_1(1-x_2)$.

Definition 9

For any $n \in \mathbb{N}$, any $f : \{0,1\}^n \to \mathbb{R}$ and any $d \in \{0,\ldots,n\}$, let

For any
$$n \in \mathbb{N}$$
, any $f: \{0,1\}^n \to \mathbb{R}$ and any $d \in \{0,\ldots,n\}$, let

$$C_{nd}^+(f) := \left\{ c \in C_{nd}^+ \mid f_c = f \right\} .$$

(12)

Note. For any $n \in \mathbb{N}$ and any $f : \{0,1\}^n \to \mathbb{R}$, $C_{nn}^+(f)$ contains at least the min-term posiform of f.

Lemma 4

 $\forall n \in \mathbb{N} \quad \forall f : \{0,1\}^n \to \mathbb{R} \quad \forall c \in C_{nn}^+(f) \quad \forall x \in \{0,1\}^n \quad c_{\emptyset\emptyset} \le f(x) .$

Proof.

▶ By definition, we have, for all $x \in \{0,1\}^n$,

$$f(x) = \sum_{m=0}^{d} \sum_{(K^{1},K^{0}) \in K_{nm}^{+}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j})$$

$$= c_{\emptyset\emptyset} + \sum_{m=1}^{d} \sum_{(K^{1},K^{0}) \in K_{nm}^{+}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j}) ,$$

and all coefficients $c_{K^1K^0}$ in the second sum are non-negative.

- ▶ Therefore, the second sum is non-negative.
- ► Thus.

$$\forall x \in \{0,1\}^n \qquad f(x) \ge c_{\emptyset\emptyset}$$

Proof.

▶ By definition, we have, for all $x \in \{0,1\}^n$,

$$\begin{split} f(x) &= \sum_{m=0}^{d} \sum_{(K^{1},K^{0}) \in K^{+}_{nm}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j}) \\ &= c_{\emptyset\emptyset} + \sum_{m=1}^{d} \sum_{(K^{1},K^{0}) \in K^{+}_{nm}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j}) \ , \end{split}$$

and all coefficients $c_{K^1K^0}$ in the second sum are non-negative.

- ▶ Therefore, the second sum is non-negative.
- ► Thus.

$$\forall x \in \{0,1\}^n \qquad f(x) \ge c_{\emptyset\emptyset}$$

Proof.

▶ By definition, we have, for all $x \in \{0,1\}^n$,

$$f(x) = \sum_{m=0}^{d} \sum_{(K^{1},K^{0}) \in K_{nm}^{+}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j})$$

$$= c_{\emptyset\emptyset} + \sum_{m=1}^{d} \sum_{(K^{1},K^{0}) \in K_{nm}^{+}} c_{K^{1}K^{0}} \prod_{j \in K^{1}} x_{j} \prod_{j' \in K^{0}} (1 - x'_{j}) ,$$

and all coefficients $c_{K^1K^0}$ in the second sum are non-negative.

- ► Therefore, the second sum is non-negative.
- ► Thus.

$$\forall x \in \{0,1\}^n \qquad f(x) \ge c_{\emptyset\emptyset} .$$

Definition 10

For any posiform $c: J \to \mathbb{R}$, a pair (S, y) such that $S \subseteq [n]$ and $y: S \to \{0,1\}$ is called a **contractor** of c iff

$$y: S \to \{0,1\}$$
 is called

$$\rightarrow \{0,1\}$$
 is called a **contractor** of c iff

$$g:S o\{0,1\}$$
 is called a **contractor** of c iff $orall (I^1\cap S=\emptyset)$ \wedge $I^0\cap S=\emptyset$

$$y:S o\{0,1\}$$
 is called a contractor of c in $egin{aligned} orall (J^1,J^0)\in J & (J^1\cap S=\emptyset) & \wedge & J^0\cap S=\emptyset) \end{aligned}$

$$\forall (J^1, J^0) \in J \qquad (J^1 \cap S = \emptyset \quad \land \quad J^0 \cap S =$$

$$\forall \ (\exists j \in J^1 \cap S \quad y_j = 0)$$

$$\forall \ (\exists j \in J^1 \cap S \quad y_j = 0)$$

$$\vee (\exists j \in J^0 \cap S \quad y_j = 1) \ .$$

(13)

Lemma 5

For any
$$n \in \mathbb{N}$$
, any $f: \{0,1\}^n \to \mathbb{R}$, any posiform $c \in C^+_{nn}(f)$, any contractor (S,y) of c and $t_{S,y}: \{0,1\}^n \to \{0,1\}^n$ such that
$$\forall x \in \{0,1\}^n \quad \forall j \in [n] \quad (t_{S,y}(x))_j = \begin{cases} y_j & \text{if } j \in S \\ x_j & \text{otherwise} \end{cases}$$

 $\forall x \in \{0,1\}^n \quad f(t_{S,\eta}(x)) < f(x)$.

(14)

(15)

holds

$$\forall x \in \{0,1\}^n \quad \forall j \in [$$

Lemma 5

holds

For any $n \in \mathbb{N}$, any $f: \{0,1\}^n \to \mathbb{R}$, any posiform $c \in C^+_{nn}(f)$, any

contractor (S,y) of c and $t_{S,y}: \{0,1\}^n \to \{0,1\}^n$ such that

Corollary 2 (weak persistency)

 $\forall x \in \{0,1\}^n \quad \forall j \in [n] \quad (t_{S,y}(x))_j = \begin{cases} y_j & \text{if } j \in S \\ x_j & \text{otherwise} \end{cases}$

 $\forall x \in \{0,1\}^n \quad f(t_{S,\eta}(x)) < f(x)$.

 $\hat{x} \in \underset{x \in \{0,1\}^n}{\operatorname{argmin}} f(x) \quad \Rightarrow \quad t_{S,y}(\hat{x}) \in \underset{x \in \{0,1\}^n}{\operatorname{argmin}} f(x)$

(14)

(15)

(16)

- Let $J^{\bar{S}}:=\{(J^1,J^0)\in J^+_{nn}\mid J^1\cap S=J^0\cap S=\emptyset\}$ and $J^S:=J-J^{\bar{S}}.$
- ► By definition,

$$\forall x \in \{0,1\}^n \qquad f(x) = \underbrace{\sum_{\substack{(J^1,J^0) \in J^S \\ =:f^S(x)}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x'_j)}_{=:f^S(x)} + \underbrace{\sum_{\substack{(J^1,J^0) \in J^{\bar{S}} \\ =:f^S(x)}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x'_j)}_{=:f^S(x)}$$

► Furthermore,

$$\forall x \in \{0,1\}^n \qquad f^S(t_{S,y}(x)) = 0 \qquad \qquad \text{(by definition}$$

$$0 \leq f^S(x) \qquad \text{(because } (\emptyset,\emptyset) \not \in J^S$$

$$f^{\bar{S}}(t_{S,y}(x)) = f^{\bar{S}}(x) \qquad \qquad \text{(by definition)}$$

- ▶ Let $J^{\bar{S}}:=\{(J^1,J^0)\in J^+_{nn}\mid J^1\cap S=J^0\cap S=\emptyset\}$ and $J^S:=J-J^{\bar{S}}.$
- ► By definition,

$$\forall x \in \{0,1\}^n \qquad f(x) = \underbrace{\sum_{\substack{(J^1,J^0) \in J^S \\ =:f^S(x)}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1-x'_j)}_{=:f^S(x)} + \underbrace{\sum_{\substack{(J^1,J^0) \in J^{\bar{S}} \\ =:f^{\bar{S}}(x)}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1-x'_j)}_{=:f^{\bar{S}}(x)} \ .$$

► Furthermore,

$$\forall x \in \{0,1\}^n \qquad f^S(t_{S,y}(x)) = 0 \qquad \qquad \text{(by definition}$$

$$0 \leq f^S(x) \qquad \text{(because } (\emptyset,\emptyset) \not \in J^S$$

$$f^{\bar{S}}(t_{S,y}(x)) = f^{\bar{S}}(x) \qquad \qquad \text{(by definition)}$$

- ▶ Let $J^{\bar{S}}:=\{(J^1,J^0)\in J^+_{nn}\mid J^1\cap S=J^0\cap S=\emptyset\}$ and $J^S:=J-J^{\bar{S}}.$
- ► By definition,

$$\forall x \in \{0,1\}^n \qquad f(x) = \underbrace{\sum_{\substack{(J^1,J^0) \in J^S}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x'_j)}_{=:f^S(x)} + \underbrace{\sum_{\substack{(J^1,J^0) \in J^{\bar{S}}}} c_{J^1J^0} \prod_{j \in J^1} x_j \prod_{j' \in J^0} (1 - x'_j)}_{=:f^{\bar{S}}(x)}.$$

Furthermore,

$$\begin{aligned} \forall x \in \{0,1\}^n \qquad f^S(t_{S,y}(x)) &= 0 \qquad \qquad \text{(by definition)} \\ 0 &\leq f^S(x) \qquad \text{(because } (\emptyset,\emptyset) \not\in J^S\text{)} \\ f^{\bar{S}}(t_{S,y}(x)) &= f^{\bar{S}}(x) \qquad \qquad \text{(by definition)} \end{aligned}$$

Summary

- ► Every PBF has a posiform
- ► The posiform of a PBF need not be unique
- ightharpoonup For every PBF f and every posiform c of f
- To revery FBI j and every position in a the mainimum of
 - c_{∅0} is a lower bound on the minimum of f
 weak persistency holds at any contractor of c