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This lecture is based on the publications
» E. Boros, P. L. Hammer, X. Sun: Network flows and minimization of
quadratic pseudo-Boolean functions. RUTCOR Research Report
17-1991
» E. Boros, P. L. Hammer: Pseudo-Boolean optimization. Discrete
Applied Mathematics 123(1-3): 155-225 (2002)
» E. Boros, P. L. Hammer, R. Sun, G. Tavares: A max-flow approach

to improved lower bounds for quadratic unconstrained binary
optimization (QUBO). Discrete Optimization 5(2): 501-529 (2008)
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» For any A, 2* denotes the power set of A.

For any A and any k € Ny, (;) denotes the set of all subsets of A
with precisely k& elements.

For any A and any B C A, let B := A — B denote the
complement of B in A.

For any A, B and (a,b) € A x B, let ab := (a,b), i.e. short-hand for
an ordered pair.

For any n € N, let [n] := {m € Njm < n}.

For any A and any B, let B* denote the set of all maps from A to
B, ie., the set of all f € 24%5 such that

Vaoe Adbe B abef
Vae AVb,)' € B (abe fAab € f)=(b=1) .

We may write f : A — B instead of f € BA.



Definition 1

For anyn € N, any f:{0,1}" — R is called an n-variate
Pseudo-Boolean function (PBF).
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Definition 2
For anyn € N, any d € {0,...,n}, let

Kopg = (W) = ) K Cu=EM (1)

m=0

and call any ¢ € C,4 an n-variate multi-linear polynomial form of
degree at most d.

Example. For n = d = 2, we have
=Y ()
(57 () ()
={0ru{{i}, {2y u{{1.2}}
= {0, {1}, {2}, {1, 2}}
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Definition 3

Foranyn €N, anyd € {0,...,n} and any c € Cpq, fc:{0,1}" - R
such that

Ve e {0,1}" fo(x Z S]] (2)
m=0 ;¢ [n]) jeJ
is called the PBF defined by c.
Example. For any ¢ € Ca, f.:{0,1}?> — R is such that

Vo € {0,1}%  fo(x1,22) = cp + Cr1yT1 + C(2) T2 + ¢y 21 212
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Lemma 1

Every PBF has a unique multi-linear polynomial form. More precisely,

YneN Vf:{0,1}" >R FiceCnh f=fc. (3)

Example. For n = d =2 and any f: {0,1}? — R, the existence of a
¢ € Cyy such that f = f. means

Vo € {0,1}*  f(x1,22) = cp + C{1}T1 + C{2)T2 + C{1 2} 712 -

Explicitly,
f(0,0) = cp
f(1,0) = cp +cqny
f((), 1) = ¢y + ¢qoy
F(1,1) = ¢+ cqy +cqoy +cqu2)

In this example, a suitable ¢ exists and is defined uniquely by f.
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Proof.
» For any J C [n], let 7 € {0,1}" such that

1 ifjed
Vj e J =
jeml @ {O otherwise

» Now,

Vo e {0,1}" f(z) = Z cy ij

Jealnl  jed
is written equivalently as

f@’) = ¢y
V4D fz!)=cs+ ZC]I .

J'cJ

» Thus, ¢ is defined uniquely (by induction over the cardinality of J).
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Definition 4
For anyn € N and any d € {0,...,n}, let

Fo:={f:{0,1}" 3R |3c€Cpq: f=f} (4)

and call any f € F,,4 an n-variate PBF of degree at most d.
In addition, call any f € F,2 a quadratic PBF (QPBF).

Note. For any n € N, F,,,, is the set of all n-variate PBFs (by Lemma 1).



» Pseudo-Boolean Optimization (PBO): Given n € N and
F{0.1}" >R,

mer{%iﬁl}n f(x) . (5)

» Quadratic Pseudo-Boolean Optimization (QPBO): Given n € N
and f € Fy9,

mer{%iﬁl}n f(z) . (6)

» Is QPBO less complex than PBO?



Definition 5

For any n € N and any c € C,,,, define the size of ¢ as

size(c) := Z |J] .

JC[n]:cs#0



Lemma 2
For any x,y,z € {0,1}:

z=xy <& 2y—2z2—2yz+32=0,
z#xzy < ay—2xz—2yz+32>0 .

Proof. By verifying equivalence for all eight cases.



Algorithm 1 (Boros and Hammer 2001)

Input: ce C,,

Output: ¢ € Cp2

M 0= 1 + 22Jg[n] ‘CJ|

m:i=n

C'HL ‘=c

while there exists a J C [n] such that |J| > 2 and ¢} # 0
Choose j, k € J such that j # k
m+1 = cm

m+1 L m+1
Uy = i+ M
{Jﬂ‘f‘l} —2f
Sy =
Clmt1} - 3M
for all {j,k} C J' C [ ] such that ¢/} #£0
m+1 m+1
CJ/ {] k}U{77L+1} J’
=0
m:=m+ 1
d=cm



Theorem 1
» Algorithm 1 terminates in polynomial time in size(c).
» size(c’) is polynomially bounded by size(c).

» The multi-linear quadratic form ¢’ is such that Vi € R":

& € argmin f.(z)
ze{0,1}m

= i’ e {0,1}™ (i{n] = &, A2’ € argmin fo (w’)) . (10)
z’e{0,1}™
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Proof.

» The algorithm replaces the occurrence of z ;) by ;41 and adds
the form M (z;x5 — 22;Tm+1 — 25Tm+41 + 3Tmi1)-

> If opmg1 = T8,

Ny, ) = (21, 2n) < max f(a)) < M2 .

z/€{0,1}m
> If 2mp1 # Tk,
fm+1(‘r17 e ,xm+l) Z M/2

(by Lemma 2 and by definition of M).

» For every iteration m,
{J S ll[J]>2A 5T £ 0} < {J S [n]l|J] > 2 Ay # 0}

which proves the complexity claims.



Summary
» Every PBF has a unique multi-linear polynomial form.
» PBO is polynomially reducible to QPBO.



Definition 6
For any n € N and any d € {0,...,n}, let

K ={(K, KK K°CnAK'NnK®=0A|K'|+|K° =m}
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T = U Kl
m=0
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Definition 6
For any n € N and any d € {0,...,n}, let

K ={(K, KK K°CnAK'NnK®=0A|K'|+|K° =m}

d
Jim = U K
m=0
Ciim = {C:J'rj:m —-R | Vj € J’j;m_{((&@)} 0< Cj}

nm

and call any ¢ € C}}, an n-variate posiform of degree at most d.

Example. Forn =d = 2,

T = {0.0)}
u{ ({11,0), @.{1}), ({2}.0), (0.{2}) }
U{ ({1,250), ({1142}, ({2} {1}), @.{1,2}) }
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Definition 7

Foranyn € N, anyd € {0,...,n} and any c € Crfd, fe:{0,1}" - R
such that

Ve e {0,1}"  fu@)i= > cpgpo [Ja J[J -2 (1)
(Jr,g0eJgt, JeJt j'eJo

is called the PBF defined by c.

Example. For any ¢ € C, f.:{0,1}?> — R is such that Yz € {0,1}2

f(@) =" cpp
+ cqyom1 + cpqry (1 — 1) + cay072 + cpp2y (1 — 22)
+cq1,210m122 + cpyp2yr (1 — 22) + cqoyy (1 — 21) 22
+ C@{l,g}(l —z1)(1 —xq) .



Definition 8
For anyn € N and any f : {0,1}"™ — R, the posiform defined by
Vr € {0,1}" K. :={j€ n]lz; =1}
Ky :={j € [n]lz; =0}
and

{@0}u | J{E), KD}
z€{0,1}m

and ¢ : J — R such that

cpp = xer{%i,rll}” f(z)

f(z) —cop

Vo € {071}n CK;Kg 8

is called min-term posiform of f.



Lemma 3

For anyn € N and any f : {0,1}" — R, the min-term posiform ¢ of f
holds f. = f.



Lemma 3

For anyn € N and any f : {0,1}" — R, the min-term posiform ¢ of f
holds f. = f.

Corollary 1

For any n € N and any f :{0,1}" — R, there exists a posiform ¢ € C,},,
such that f. = f.



Proof of Lemma 3.

» Let n e Nand f:{0,1}" — R. Moreover, let ¢: J — R the
min-term posiform of f.



Proof of Lemma 3.

» Let n e Nand f:{0,1}" — R. Moreover, let ¢: J — R the
min-term posiform of f.

» cis a posiform (by definition).



Proof of Lemma 3.
» Let n e Nand f:{0,1}" — R. Moreover, let ¢: J — R the
min-term posiform of f.
» cis a posiform (by definition).
» Let g:{0,1}" — R be the PBF defined by this posiform.



Proof of Lemma 3.

» Let n e Nand f:{0,1}" — R. Moreover, let ¢: J — R the
min-term posiform of f.

» cis a posiform (by definition).
» Let g:{0,1}" — R be the PBF defined by this posiform.
» Then, for any z € {0,1}",

(J4 J%) € {(0,0), (KL, Ky C J

are the only elements of J for which

0# [[ [TO-2)=1.

jeJt j'eJo



Proof of Lemma 3.

» Let n e Nand f:{0,1}" — R. Moreover, let ¢: J — R the
min-term posiform of f.

» cis a posiform (by definition).
» Let g:{0,1}" — R be the PBF defined by this posiform.
» Then, for any z € {0,1}",

(J',J%) € {(0,0), (K,,K)} € J
are the only elements of J for which
0# [[ [TO-2)=1.
jeJt  jredo
» Thus,
Ve € {0,1}"  g(z) = cgp + criko

=cpp + f(x) —cpp  (by definition of ¢)
= f(z) .
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Definition 9
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Note. Unlike multi-linear polynomial forms, posiforms of PBFs need not
be unique, e.g., 1 = z1x9 + x1(1 — z2).

Definition 9
Foranyn € N, any f :{0,1}" = R and any d € {0,...,n}, let

Cha(f) i={ceCly| fe=f} . (12)

Note. For any n € N and any f:{0,1}" — R, C,}. (f) contains at least
the min-term posiform of f.



Lemma 4

VneN Vf:{0,1}" =R VceCl (f) Yz e{0,1}" cpp < f(z) .



Proof.
» By definition, we have, for all z € {0,1}",

d
flz) = Z Z CK1FO H x; H (1—2f)

m=0 (K1 K0 e K}, jEK?! j'EKO
d
/
:CMH'E E CKlKOHJTj H(l—%‘)a
m=1(K1 KO)eK,  JEK' jEKO

and all coefficients ci1 o in the second sum are non-negative.



Proof.
» By definition, we have, for all z € {0,1}",

d
flz) = Z Z CK1FO H x; H (1—2f)

m=0 (K1 K0 e K}, jEK?! j'EKO
d
/
=cyp + E E CK1KO H xj H (1—a%) ,
m=l(K1,K0)eK,,,  JEK' jEK®

and all coefficients ci1 o in the second sum are non-negative.

» Therefore, the second sum is non-negative.



Proof.
» By definition, we have, for all z € {0,1}",

d
flz) = Z Z CK1FO H x; H (1—2f)

m=0 (K1 K0 e K}, jEK?! j'EKO
d
/
:CMH'E E CKlKOHJTj H(l—%‘)a
m=1(K1 KO)eK,  JEK' jEKO

and all coefficients ci1 o in the second sum are non-negative.
» Therefore, the second sum is non-negative.
» Thus,

Vo e {0,1}"  f(z) > cpp -



Definition 10
For any posiform ¢ : J — R, a pair (S,y) such that S C [n] and
y:S — {0,1} is called a contractor of ¢ iff
V(I J% e J J'nS=0 A J'NnS=0)
v(E3ieJnS y;=0)
v(FjeJ'nS y;=1).



Lemma 5

For anyn € N, any f :{0,1}" — R, any posiform c € C}}. (f), any
contractor (S,y) of c and tg, : {0,1}"™ — {0,1}" such that

Yj Ifj es
x; otherwise

vz € {0,1}" Vjeln] (tsy(@)); = {

holds
Vo € {0,117 fltsy (@) < f(z) - (15)



Lemma 5

For anyn € N, any f :{0,1}" — R, any posiform c € C}}. (f), any
contractor (S,y) of c and tg, : {0,1}"™ — {0,1}" such that

Vo€ {0,1)" Vi€l (tsy(e); = {y Ier )
holds
Ve € {0,1}"  fltsy(a)) < f(2) . (15)
Corollary 2 (weak persistency)
&€ argmin f(z) = ts,(2) € argmin f(z) (16)

z€{0,1}" ze{0,1}™



Proof of Lemma 5.
> Let JO = {(J,J) e Jf | J'NS=J"NS =0} and
JS=J-J%,



Proof of Lemma 5.
> Let JS = {(J1,J) e Jh | J'nS=J°NS =0} and
JS=J—Js.
» By definition,
vee{o,1}"  f(x)

= ZCJlJOHI]H 1*1‘

(J1,J0eJs  jeJt  j'eJo

—15(@)

+ ZC[l]OH.’IJJH 1—55

(J1,J%eJs  jeJt  jeJo

=15 (@)



Proof of Lemma 5.

> Let JS = {(J',J0) e J}

JS=J—Js.
» By definition,

| J1NS=J°NS =0} and

Vo € {0,1}" fz) = Zchjon] H (1—a})
(J1,J9eJs  jeJt  j'eJO
=:f5(z)
+ ZC’”OH%H 1—30
(J1,J90eJS  jeJr €O
=:f5(x)
» Furthermore,
Vo€ {0,1}"  fS(ts,(x) =0 (by definition)
0< f%x) (because (9,0) & J°)
FEtsy (@) = 7 (x) (by definition)



Summary
» Every PBF has a posiform
» The posiform of a PBF need not be unique
» For every PBF f and every posiform c of f

> cpg is a lower bound on the minimum of f
» weak persistency holds at any contractor of ¢



